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Abstract 

of thesis entitled: 

Attribution of Seasonally Dependent Extreme Precipitation Characteristics 

in the Pearl River Delta Region to Anthropogenic Influences  

Submitted by ZHAO, Rui 

for the degree of Doctor of Philosophy  

at The Chinese University of Hong Kong in March 2022 

 

The Pearl River Delta (PRD) region, one of China’s economic centers with a dense population, 

has experienced a rising trend in heavy precipitation that caused tremendous damage to society 

the environment. According to the Clausius–Clapeyron (CC) relation, a warmer climate mainly 

caused by human activity leads to ~7% increases in water vapor per degree warming, which is 

usually assumed to intensify heavy rainfall proportionally. Global warming may further affect 

precipitation via altering atmospheric circulation. This study explores the extent to which PRD 

heavy rainfall in different seasons responds to human influence by applying the pseudo global 

warming (PGW) method in the Weather Research and Forecasting (WRF) model integrated at 

a cloud-resolving spatial resolution of 2 km x 2 km. 

We first conducted attribution analysis on 40 extreme rainfall events during 1998-2018 in PRD, 

including 23 cases from May to September (hereafter MJJAS) and 17 in the rest months (non-

MJJAS). The model was forced to reproduce these cases with the factual and “counterfactual” 

conditions separately. The latter condition was achieved by deriving human-induced changes 

from differences between historical and natural runs from the Coupled Model Intercomparison 

Project Phase 5 (CMIP5) models, and then subtracting them from the factual condition 

(equivalent to the reverse of PGW). By comparing parallel experiments, the near-surface 
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temperature in PRD has raised by 0.9-1.1 K in MJJAS and 0.6-0.8 K in non-MJJAS season. 

Due to such anthropogenic warming, the intensity of extreme daily rainfall (> 95th percentile) 

increased by 8-9.5% (~CC rate) in MJJAS and 12.4% at most (~2×CC rate) in non-MJJAS 

season; their probability of occurrence increased by 10-30% in MJJAS and 20-40% in non-

MJJAS. Moisture-related thermodynamic effects on rainfall change in the two seasons are 

similar, while dynamic effects on rainfall differ according to the season. Changes in MJJAS 

rainfall are related to stronger low-level southerly winds and the dominance of stronger ascents 

and descents. Larger increments in non-MJJAS rainfall are attributable to the strengthened low-

level wind convergence and updraft. Moisture budget analysis suggests that thermodynamic 

effects account for the mean rainfall increase, whereas dynamic effects are responsible for 

rainfall extremes as inferred from WRF simulations.  

Next, the seasonal dependence of extreme rainfall responses to human influence was examined 

by studying two remarkable extreme events from different seasons. To understand the involved 

mechanisms, we carried out an additional “counterfactual” run to isolate the human-caused 

thermodynamic effect. The human-induced dynamic effect can be inferred from the difference 

between the two “counterfactual” runs. In the record-breaking winter event attribution, human 

activities have caused the 4-day mean rainfall to increase at the CC rate and the 95th and 99th 

percentile extreme rainfall to increase at the double of CC rate. It is noteworthy that human-

caused dynamic effects can further exacerbate the thermodynamic-driven rainfall increase. 

This is likely the results of robust land-sea thermal contrast, favoring anomalous southerly 

winds and strong wind convergence under human-related climate warming, highlighting the 

dominant role of dynamic effects on extreme rainfall intensification in this event.        

We have also conducted attribution experiments for a pre-monsoon heavy rainfall event in May. 

This is motivated by the fact that PRD heavy rainfall in May is projected to decrease due to 

human influence based on global climate models. Large ensemble approaches were adopted to 
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ensure the model’s fidelity in simulating this event. Human-induced thermodynamic anomalies 

have led to over 70% reduction in this pre-monsoon rainfall over eastern PRD and 25%-40% 

increases in the west for ~0.9 K warming; it also decreases rainfall probability by 20% per 

degree warming. This is due to decreased relative humidity and higher convection inhabitation 

energy by human-caused warming. These reductions, however, are mitigated by human-related 

dynamic effects associated with anomalous southerly winds.  

Overall, we applied a new method to generate “counterfactual” conditions in regional models. 

Results of multi-case attribution highlight the human-induced greater enhancement in non-

MJJAS rains compared to that in MJJAS season. All the findings point to the importance of 

dynamic effects on PRD rainfall extremes. More research into the role of weather type and 

background circulation played in rainfall responses to human forcing is warranted.    
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摘要 

在人為強迫全球增暖的背景下，珠三角地區頻繁遭受強降水，從而對環境和社會造成

了嚴重破壞。根據克勞修斯-克拉珀龍(CC)關係，大氣每升溫 1 K，空氣中水汽含量增

加約 7%，從而加劇極端降雨。另外，人為變暖通過改變大氣環流強度可能會進一步影

響極端降水。本研究使用 2 km 雲解析天氣預報模式 WRF 並基於偽全球變暖法 (PGW)，

歸因分析了不同季節珠三角強降水事件對人為強迫的響應。 

首先，我們對 40 例發生於 1998 至 2018 年間的珠三角極端降水事件進行歸因分析，其

中 23 例發生在 5 至 9 月 (即 MJJAS) 以及 17 例發生在其餘月份 (非 MJJAS)。我們在事

實和“反事實”條件下驅動模式。首先得到人為強迫信號，即 CMIP5 多模式中歷史和

自然強迫實驗之差，再將該人為強迫從事實條件中剔除，從而得到上述條件(相當於反

PGW 法)。對比這兩組平行實驗可知，由於人為影響，珠三角近地表溫度在 MJJAS 升

高了 0.9-1.1K，在非 MJJAS 升高 0.6-0.8K。因此，MJJAS 極端降雨量 (> 95th百分位數) 

增多 8-9.5％ (約 CC 增率)，而非 MJJAS 降水可增至 12.4％ (約兩倍 CC 增率); 降水發生

頻率在 MJJAS 增加 10-30%，在非 MJJAS 增加 20-40%。水汽驅動的熱動力過程對兩季

節降雨強度的影響類似；而動力過程對降水影響隨季節變化。MJJAS 降水變化與強低

層偏南風以及強上升和下沉氣流有關，而非 MJJAS 降水增加的幅度更大是由於低層風

輻合增強以及上升氣流更頻繁。水分收支分析表明，人為引起的熱動力變化對平均日

降水增加的貢獻最大，而動力變化對極端降水的貢獻最大。 

接著，我們通過兩個發生在不同季節的極端降水事件探究了人為影響極端降雨的季節

性差異。為深入理解其物理機制，我們實施了另外的“反事實”實驗來分離僅人為引

起的熱動力影響。兩次擾動實驗之差則表示人為引起的動力影響。通過對一次罕見的
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冬季暴雨進行歸因分析，我們發現人為影響導致 4日平均降雨量以 CC速率增加，而極

端降水則以約兩倍的 CC 速率增加。人為影響的動力過程可加劇由熱動力過程驅動的

極端降水增強。這可能是由於強烈的海陸熱力差促使了異常南風及更強勁的低層輻合。

這些發現突出了該事件中動力影響對極端降雨變化的主導作用。 

我們還對一次季風前 (5 月) 強降雨事件進行歸因實驗。該部分研究是基於一個發現：

全球模式結果表明人為影響導致珠三角 5 月極端降雨減少。歸因實驗採用大型集成方

法來確保模式重現此事件的真實度。結果表明，在 0.9K 低層大氣增暖背景下，人為引

起的熱動力異常使珠三角東部降雨量減少 70%以上，而西部降雨增加 25%-40%；該異

常也導致降雨頻率降低 20% K-1。這是由於對流層變暖，致使相對濕度降低，因此對流

抑制能量增多。而人為引起的動力異常則緩解了此次降雨減少。 

綜上所述，我們提出一個在區域模式中構建“反事實”條件的新方法。多個例歸因結

果表明，人為影響使得非 MJJAS季節降水比 MJJAS增強更顯著。本研究發現還強調了

人為引起的動力強迫對極端降水的影響更重要。此外，對天氣類型和背景環流在降雨

對人為強迫響應中的作用仍有待研究。
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Chapter 1  Introduction 

The hydrological cycle is strongly affected by climate change. Under the current warming 

climate, most regions of the globe have suffered robust fluctuations in rainfall, such as floods 

and droughts that have devastating consequences for the environment, the economy, and 

society. Regarding hydrological changes over the globe, scientists have raised these general 

but important questions: 1) what are the past and future changes in precipitation characteristics 

at various temporal and geographical scales? 2) To what extent can these changes be related or 

attributed to climate change primarily due to human activities? 3) What is the role of natural 

climate variability in observed extreme events? This chapter first introduces the research 

background on precipitation variations and their responses to climate change, followed by a 

literature review on a very challenging topic: attributing hydrological extremes to human 

influence. The motivation, objectives, and roadmap of this thesis are finally presented.   

1.1  Research background 

1.1.1 Changes in precipitation characteristics 

Precipitation is a fundamental component of the hydrological cycle in the climate system. It is 

mainly characterized by the total amount accumulated over some averaging periods, frequency 

(i.e., numbers of rainy days), intensity (i.e., mean rainfall per day or hour), rain types (i.e., 

convective or stratiform), and duration of events (Dai, 2001b, 2001a; Dai, 2006). Precipitation 

variations have a variety of time scales, from hours to decades, leading to diverse consequences 

on the environment and society. For instance, steady moderate precipitation soaks the soil and 

benefits plants (Trenberth, 2011), while heavy rainfall with short durations can cause severe 

flooding disasters that lead to enormous economic and even human losses (Duan et al., 2016; 
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Willner et al., 2018). Numerous studies have been devoted to revealing and understanding the 

historical variations of precipitation and to predicting their variabilities in the future climate.     

Long-term trends and changes in the rainfall amount (e.g., monthly, seasonal, annual, and 

decadal mean) have been analyzed based on in-situ observations over various regions (Hulme, 

1992; Shahid, 2011; Groisman et al., 2012; Spracklen & Garcia-Carreras, 2015; Huang et al., 

2017; Nicholson et al., 2018; Hoffmann & Spekat, 2021). Many of these regions have 

experienced increasing precipitation trends over the past century, while drying trends of annual 

rainfall are also seen, e.g., the Mediterranean (Longobardi & Villani, 2010; Mariotti et al., 

2015), North America and Australia (Cook et al., 2018), and Western Africa (Dunn et al., 2020), 

as well as North China (the latter due to the weakened East Asian monsoon) (see Wang & Ding, 

2006; Ding et al., 2008; Zhou et al., 2008; Zhang et al., 2011). The amount change varies not 

only with regions but also with rainfall categories. For instance, tropical rainfall change shows 

a decreasing trend of 2.6% per decade for light rainfall but an increasing trend of 1.8% per 

decade for intense rainfall from 1988 to 2008 (Allan et al., 2010). Further studies demonstrate 

that the former contributes more to changes in the total rainfall amount (Dai, 2001b; Liu et al., 

2005; Trenberth & Zhang, 2018).  

Various observational records also show remarkable agreement in changes in extreme rainfall, 

compared with mean and moderate rains (Karl & Knight, 1998; Groisman & Knight, 2008; 

Fischer & Knutti, 2016; Huang et al., 2017). They also show an exacerbation of heavy rainfall 

events in many locations of the globe (Alexander et al., 2006; Min et al., 2011), and with 

decreased durations (Dwyer & O’Gorman, 2017). Several indices are adopted to quantify 

precipitation extremes (see Table 1 in Dunn et al. (2020)). The most commonly used indices 

are the maximum precipitation amount in a day (Rx1day) or in 5 days (Rx5day) and the 

precipitation from days in the top 95% or 99% (R95p, R99p). On the global scale, the decadal 

trend and probability of Rx1day were firstly assessed by Easterling et al. (2000). The frequency 
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of heavy precipitation events (R95p) indicates an increasing probability for many extratropical 

regions (Groisman et al., 2005). A similar change is also seen in the tropics (Lau & Wu, 2007, 

2011). Lately, it was found that Rx1day increased dramatically over the global land since the 

1950s (Dunn et al., 2020; Sun et al., 2021); Rx5day has similar long-term trends as Rx1day 

from a global perspective (Zhang & Zhou, 2019), with a higher increase in Rx5day (4.7%) than 

in Rx1day (4.0%) over Northern Hemisphere land (Zhang et al., 2013).  

On the regional scale, changes in extreme daily rainfall show spatial diversity. Compelling 

evidence of extreme precipitation intensification has been found in most continental areas, 

regardless of observational datasets and data processing methods utilized. For example, both 

Rx1day and Rx5day increased in North America and Europe from 1950 to 2018 (Sun et al., 

2021) and in some South Asia areas for 1961-2000 (Sheikh et al., 2015); R99p increased by 

0.3 mm per year in Northeast America during 1979-2014 (Howarth et al., 2019), and R95p 

enhanced from 1972 to 2010 over South Asian monsoon areas (Cheong et al., 2018; Kim et al., 

2019). Particularly in China, the accumulated amount of area-averaged heavy daily rainfall has 

increased by ~2% per decade for 1960-2013 (Ma et al., 2015); the maximum hourly summer 

rainfall intensity enhanced by ~11% within the 1971-2013 period (Xiao et al., 2016). In contrast, 

heavy rainfall in Australia tends to increase in the north but decrease in the eastern parts of the 

continent (Dey et al., 2019; Sun et al., 2021). There exists a significant decline in daily rainfall 

extremes in the Eastern Mediterranean (Mathbout et al., 2018), as well as an increase in 

hydrological droughts in California (Diffenbaugh et al., 2015) and the Mediterranean 

(Gudmundsson & Seneviratne, 2016), probably due to anthropogenic climate change. In East 

Asia, no systematic trend of extreme rainfall frequency was found (Choi et al., 2009). Moreover, 

changes in different rain types may differ. Haerter & Berg (2009) suggested that more 

convective precipitation occurred with shorter durations. The duration of extreme events was 

also found to decrease as temperature rises (Haerter et al., 2010; Hardwick Jones et al., 2010).  
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With the knowledge of historical precipitation behaviors, numerous efforts have been devoted 

to evaluating the performance of current weather and climate models against a variety of 

observational data and, more importantly, to predicting future changes of precipitation. Model 

projections suggest that precipitation becomes more unevenly distributed in a future warmer 

climate. Konapala et al. (2020) examined precipitation changes over global land under three 

future scenarios of representative concentration pathways (RCP2.6, 4.5, and 8.5) in global 

climate models (GCMs) participating in the Fifth Phase of Coupled Model Intercomparison 

Project (CMIP5), suggesting that the annual mean increases across all land, with largest 

increments in RCP 8.5, under which it reaches 12%±8% in China by the end of 21st century 

(Tian et al., 2015). The seasonal mean change presents a wet-gets-wetter pattern as previously 

reported by Chou et al. (2009, 2013) and Greve et al. (2014). However, in southwest Australia, 

the mean rainfall will continue to decrease based on CMIP5 models (Dey et al., 2019). 

Similarly, CMIP6 models suggest that annual mean rainfall in Central Asia significantly 

increases under all Shared Socioeconomic Pathways and the Representative Concentration 

Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), with the largest rise of 14.4% 

relative to present-day found in SSP5-8.5 (Jiang et al., 2020). Consistent with observations, 

models also show a notable enhancement in extreme precipitation from hourly to daily scales 

over both wet and dry regions (Emori & Brown, 2005; Alexander et al., 2006; Kharin et al., 

2013; Donat et al., 2016; Xiao et al., 2016; Prein et al., 2017; Dai et al., 2020).  

1.1.2  Anthropogenic forcing on precipitation extremes 

The above summarizes studies providing compelling evidence of mean and extreme rainfall 

increase across most continents under a changing climate. It is striking that there are higher 

increases in the extremes compared to the mean values. In fact, mean rainfall is strongly 

constrained by atmospheric energy balance, while extreme rainfall scales mostly with 
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temperature (Allen & Ingram, 2002; Held & Soden, 2006; Trenberth & Zhang, 2018). 

According to the latest sixth Assessment Report (AR6) of Intergovernmental Panel on Climate 

Change (IPCC), the observed global mean surface temperature has risen by 0.9℃-1.2℃ from 

1850-1900 to 2010-2019, with 0.8℃-1.3℃ attributable to human forcing and only ±0.1℃ 

owing to natural forcing (IPCC, 2021). In the future, the global mean rainfall is projected to 

increase by 3-4% K-1 (4-5% K-1 for global land and 2-4% K-1 for ocean) by the end of the 21st 

century under the RCP8.5 scenario (Pendergrass et al., 2017), which probably resulted from 

the positive Earth’s energy imbalance due to climate change (Raghuraman et al., 2021). 

Besides the mean, heavy precipitation in response to human influences, such as growing 

concentrations of greenhouse gas emissions, anthropogenic aerosol emissions, and 

urbanization effects, is of great concern.  

So how does human-induced greenhouse warming modulate precipitation? As the temperature 

rises, the atmosphere can accommodate more water vapor, such that heavy rainfall is expected 

to increase for it strongly relies upon moisture availability (Trenberth et al., 2003; Held & 

Soden, 2006). The relationship between saturation vapor pressure (𝑒!) and temperature (T) is 

expressed by the Clausius-Clapeyron (CC) equation proposed in 1838 (see, e.g., Westra et al. 

(2014)): 

"#!
"$

= %"($)#!
$#("

                            (1.1)  

where 𝑅! = 461.5 J kg-1 K-1 (gas constant of water vapor) and 𝐿! = 2.5× 10" J kg-1 (latent heat 

of evaporation of water at 0℃, a weak function of temperature). 

Then linearizing Eq. (1.1) at T = 273.15 K:  

")*#!
"$

 ≅ 0.073(1 − 0.007𝑇)          (1.2) 

The saturation specific humidity 𝑞# (the mass of water vapor) can be derived from: 
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𝑞# ≅ +.-..
/

𝑒𝑠                                  (1.3) 

where P is the pressure (105 Pa at the surface). From Eq. (1.2) and Eq. (1.3), the saturation 

specific humidity would increase by 6% (7%) per degree increase in surface temperature at 

24℃  (0℃ ). Assuming that relative humidity remains constant (Willett et al., 2007), the 

atmospheric moisture content will increase at the CC rate (6-7% K-1). Thus, extreme rainfall is 

expected to enhance at the same rate as moisture does. Indeed, results from both observations 

and simulations have corroborated the homogeneous increase in water vapor content with 

warming at the CC scaling (Ross & Elliot, 2001; Trenberth et al., 2005; Santer et al., 2007). In 

contrast, precipitation increase differs from regions and intensities. Globally, a ~7% increase 

in heavy rainfall and ~1.8% increase in light rainfall were found for a 1% rise in CO2 emissions 

per year (Lau et al., 2013). Observational evidence indicates that extreme precipitation in some 

areas increases at a super-CC rate, e.g., double of increments expected from the CC relation 

(Lenderink & Meijgaard, 2008; Lenderink et al., 2011, 2017; Fischer & Knutti, 2015; Myhre 

et al., 2019), implying a positive dynamic effect on heavy precipitation (Nie et al., 2018). The 

underlying mechanisms for such responses to anthropogenic warming will be demonstrated in 

section 1.2. In addition, there exist slight changes or decreases in intense rainfall with warming 

(Watterson, 2008), which might be related to relative humidity changes (Sherwood et al., 2010; 

Chen et al., 2020).  

Human-caused precipitation changes are not only affected by greenhouse-gas emissions, but 

also by anthropogenic aerosols. The latter can lead to a cooling effect on the climate system, 

which partly offsets global warming caused by the former (Seong et al., 2021). In contrast to 

greenhouse warming, anthropogenic aerosols have a complicated effect on rainfall (Rosenfeld 

et al., 2008). First, aerosol loadings can affect precipitation via altering atmospheric radiative 

balance by absorbing or scattering short and long-wave radiations to cool the surface (Qian et 

al., 2007). Second, aerosol particles also serve as cloud condensation nuclei and can alter cloud 



 7 

properties through the microphysical processes involved in the cloud system and ultimately 

modify precipitation ( Zhang et al., 2011; Fan et al., 2016).  

In addition, with rapid urbanization (e.g., land use/land cover change) over the last few decades, 

a growing body of literature has explored its impacts on intense precipitation in urban areas. In 

particular, urban heat island meaning higher temperature in the urban compared to surrounding 

rural areas (Zhong et al., 2017) can enhance convective initiation and intensify urban rainfall 

over a downwind of cities at the daily or sub-daily scales (Chen et al., 2015; Wu et al., 2019). 

The relative contributions of these anthropogenic forcing to precipitation change have been 

studied (Lau et al., 2017; Ma et al., 2017; Zhong et al., 2017; Seong et al., 2021). It was found 

that greenhouse gas emissions are estimated to be the main driver of tropospheric warming and 

contribute most to precipitation change globally (IPCC, 2014). For some cases, anthropogenic 

aerosols counterbalance the increased risk of floods due to greenhouse warming (Kumari et al., 

2019).  

1.2  A review on attribution of precipitation extremes to human influences 

As mentioned, global mean and extreme precipitation have increased dramatically since the 

second half of the twentieth century, in the context of climate warming induced by human 

activities. More notably, many regions have been suffering from hydrological extreme events 

more frequently, despite the mean rainfall being unchanged. The meteorological nature of these 

events and their impacts and the role of human activity in them are of growing concern of 

researchers and the general public. Allen (2003) proposed these scientific questions: Is it 

possible to attribute a specific extreme weather occurrence to climate change (mostly driven 

by human influence)? How much, if at all, has it influenced the extreme events? Addressing 

these questions feeds the growing demand to explain human impacts on extreme events and 

evaluate the contributions of various anthropogenic factors to the event. In late 2014, the World 
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Weather Attribution (www.worldweatherattribution.org) was launched to provide a real-time 

attribution assessment of extreme weather events worldwide, which promotes the development 

of the attribution science. This section reviews current studies on the science of “extreme event 

attribution” by responding to the above questions from the following aspects: 1) the approaches 

or procedures for performing an event attribution; 2) attribution results using different methods 

and some examples of recent event attribution, primarily for hydrological extremes, and 3) the 

involved potential mechanisms from large-scale and regional perspectives.       

1.2.1  Methods for attribution analysis 

A variety of approaches has been taken to event attribution study. Earth system models are an 

indispensable tool for attributing extreme events to anthropogenic influence. A typical way for 

quantitative attribution is to compare an event simulated under the climate with and without 

anthropogenic forcing (i.e., so-called factual versus counterfactual climates). The latter climate 

can be easily constructed by modifying initial conditions and forcing in models. Observation-

based empirical methods are also used for attributing the events, especially those are not well 

reproduced by models (Stott et al., 2016). The advantages of employing climate models are 

that they incorporate the physics of the climate system and can have adequate samples by 

repeating simulations using different initial conditions or physics schemes, making them more 

suitable for attribution research. We first introduce the main metrics utilized to quantify the 

changes of extreme events that are attributable to human forcing, and then review the two most 

widely used model-based approaches in attribution research. 

1.2.1.1  Metrics for attribution assessment 

Previous research assessed the potential risk of extreme event occurrences under anthropogenic 

influences by computing three metrics, including the fraction of attributable risk (FAR), 

probability ratio (PR, also called risk ratio), and return periods of events (Hannart et al., 2016). 
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The FAR was originally proposed for extreme precipitation attribution by Allen (2003) and 

theoretically documented in Stone & Allen (2005). They defined FAR=1-(P0/P1) varying from 

0 to 1, where P0 and P1 represent the occurrence probability of events exceeding a certain 

threshold under the counterfactual and factual climate, respectively. It should be noted that 

FAR describes the risk of a class of similar events rather than the risk of a specific event. For 

example, a FAR of 0.4 for a heavy rainfall event (R) indicates that two of five R-like events 

(e.g., they have similar synoptic backgrounds or intensities) in realism would not occur in the 

counterfactual climate. An alternative estimate is the PR (P1/P0), also known as ratio risks, 

which is applied to attribute rainfall extremes (Fischer & Knutti, 2015; Herring et al., 2018). 

The return period of events is used to depict how rarely the event occurs (Kumari et al., 2019). 

Several more recent studies on the attribution of hydrological extreme events using these 

estimates are listed in Table 1.1. Besides those probability metrics, anthropogenic influence 

on the intensity of extremes has been estimated by comparing long-term trends of precipitation 

indices, e.g., Rx1day and Rx5day, under different forcing climates (Paik et al., 2020). More 

detailed findings regarding these estimates are elaborated on in section 1.1.4. 

Table 1.1 Some examples of hydrological extreme events attributable to human influence. 

Date of event Location Event type Method Source 

July 2021 Western Europe Heavy rainfall PR (Kreienkamp et al., 
2021) 

Summer 2020 Eastern China Extreme Meiyu 
rainfall PR (Zhou et al., 2021) 

April-May 
2017 Bangladesh Pre-monsoon 

extreme rainfall 
Return 

period/PR (Rimi et al., 2019) 

August 2017 Texas US Extreme rainfall 
(Harvey caused) PR (Risser & Wehner, 

2017) 

2007-2017 New Zealand Floods & droughts FAR (Frame et al., 2020) 

2015-2017 Western Cape Droughts PR (Otto et al., 2018b) 
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1.2.1.2  GCM-based attribution 

The GCM-based attribution is more suitable for large-scale extreme events due to the coarse 

resolution. The most commonly used GCMs are those taken from CMIP. In CMIP5, historical 

simulations were run mostly from 1850 to 2005 as the baseline. Meanwhile, several suites of 

perturbed experiments were designed for extreme event attribution, including the historicalNat, 

historicalGHG, and historicalMisc runs forced by natural agents (e.g., volcanic eruptions and 

solar radiation), greenhouse gas emissions, and various combinations of other forcing agents 

(e.g., anthropogenic aerosols), respectively (Taylor et al., 2012). For individual rainfall events 

occurring before 2005, their responses to anthropogenic forcing can be estimated from the 

difference between historical and perturbed trials. CMIP6 models are increasingly employed 

for the attribution of extreme events after 2005 (e.g., Zhou et al., 2021). The experiments in 

each model contain a large number of ensembles, with the ensemble mean and long-term mean 

typically utilized to reduce inter-model and interannual variabilities, respectively. Using the 

large ensemble of GCMs, the circulation analogs method was presented and applied to isolate 

the human-influenced circulation impacts on extreme precipitation (Vautard et al., 2016; Yiou 

et al., 2017). This approach and relevant examples were overviewed in detail by Stott et al. 

(2016).  

1.2.1.3  RCM-based attribution 

Convection-permitting regional climate models (RCMs) with horizontal grid spacings of less 

than 5 km are typically employed for attribution of local-scale extreme events related to 

convection (Zhang et al., 2016; Minamiguchi et al., 2018; Dai et al., 2020), due to their better 

representation of these events. The pseudo global warming (PGW) method, firstly proposed by 

Schär et al. (1996) and refined by Kimura & Kitoh (2007), was applied to downscale GCM-

derived anthropogenic climate (differences between historical and perturbed runs) in RCMs. 
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The main procedures of this approach are summarized as follows:  

(1) Determine human influence upon relevant field X – differences between X in historical and 

perturbed trials in GCMs; 

(2) Obtain counterfactual IBCs – interpolate the anomalous X from (1) onto each grid of X in 

the initial and boundary conditions (IBCs) in RCMs, and impose interpolation results onto the 

latter X field;  

(3) Dynamical downscaling in RCMs – reproduce extreme events under the original and future 

IBCs (additional human forcing) separately;  

(4) Conduct attribution analysis by comparing the two sets of experiments in (3). 

The main advantage of the PGW method is that it allows one to assess certain characteristics 

of an individual event which can be attributed to human forcing usually with the help of high-

resolution regional models (Kimura & Kitoh, 2007). In addition, a “detrended” method for 

generating a counterfactual climate in RCMs was introduced and applied for the attribution of 

hurricane Harvey’s extreme precipitation (Wang et al., 2018), in which the long-term historical 

trends of reanalysis were removed from IBCs in RCMs. For the same purpose, this thesis 

presents a “reversed PGW approach” and has applied it to the PRD extreme rainfall attribution 

(see details in Chapter 2.4.3). The disadvantage of PGW – or many events based on attribution 

methods – is the impacts of climate change on the frequency and occurrence of certain types 

of events cannot be assessed.          

1.2.2  Results for extreme rainfall attribution 

1.2.2.1  Intensity variations 

Attribution studies have provided strong evidence of human influence on extreme precipitation 

intensity at global and regional scales. Observational and CMIP6 results consistently show the 
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overall increasing trends of R95p and R99p from 1951 to 2014, relative to the 1961-90 mean 

baseline, due to anthropogenic forcing, from global to continent scales (see Figure 1.1). The 

global mean Rx1day and Rx5day are observed to increase by 6.6% and 5.7% per 1 K increase 

in global mean surface temperature during 1950-2018, respectively (Sun et al., 2021). In the 

entire tropics, changes in magnitudes of extreme rainfall (R99p) reach as high as 4% on average 

for 1 K global warming, which is nearly the CC scaling (Chou et al., 2012). On a regional basis, 

Kirchmeier-Young & Zhang (2020) computed the observed and simulated changes in Rx1day 

and Rx5day using various models and approaches. The results consistently display positive 

trends for both indices, suggesting that human activities intensified extreme rainfall in North 

America from 1961 to 2010. A new attribution study on European rainfall extremes pointed to 

a latitudinal increase of rainfall intensity due to anthropogenic influence, with the increment of 

8%, 26%, and up to 41% at low, mid, and high latitudes, respectively (Tabari et al., 2020). 

Over China, CMIP5 results suggest that anthropogenic forcing has intensified the Rx1day and 

Rx5day close to the nearly CC scaling (Li et al., 2017). However, it was not detected using 

different models and attribution procedures (W. Li et al., 2018). This may imply that 

anthropogenic forcing is not robust and more research on the attribution of extreme rainfall at 

the regional scale is worth undertaking. Besides using GCMs, results from a high-resolution 

regional model demonstrate that anthropogenic warming could have increased Hurricane 

Harvey’s extreme precipitation in Texas by 20% (Wang et al., 2018), with comparable changes 

found using different models (Oldenborgh et al., 2018).   
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Figure 1.1 Time evolution of extreme rainfall for R99p (left column) and R95p (right column) 

from 1950 to 2014, relative to the 1961-1990 mean baseline, averaged over the global (GLB), 

Asia (ASI), Europe (EUR), and North America (NAM). Rainfall series are derived from the 

observations (OBS, black lines) and CMIP6 simulations with all forcing (ALL, red lines), 

greenhouse-gas forcing (GHG, blue lines), aerosol forcing (AER, brown lines), and natural 

forcing (NAT, green lines). From Dong et al. (2021).  

1.2.2.2  Probability variations 

Precipitation extremes attribution to human influence based on three probability estimates 

mentioned above have been introduced. Globally, human influence contributed a 40% increase 

in the probability of extreme precipitation for a 2℃ warming, with most pronounced increases 

in the tropics and decreases in subsidence regions; this change becomes more remarkable in 

higher warming scenarios (see Figure 1.2). On a regional scale, summer heavy rainfall (> 95th 

percentile) events in Europe became more frequent under greenhouse-gas warming, despite its 

summer getting drier (Christensen & Christensen, 2003). Pall et al. (2011) used FAR estimate 
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to attribute the exceptional year 2000 flood in England and Wales and concluded that 

anthropogenic greenhouse gas emissions enhanced the risk of such floods by about 20%. The 

return period of intense rainfall in India in June 2013 also shows a positive contribution from 

human forcing, but the precise quantification is equivocal due to the coarse resolution and 

limited ensemble size of models (Singh et al., 2014). For extreme rainfall in May 2015 in China, 

the FAR estimate suggests that anthropogenic forcing has increased the probability of such or 

more intense rainfall by at least ~23% in South China (Burke et al., 2016). For another 

exceptional heavy rainfall event in the Yangtze River basin of China in May 2016, 

anthropogenic climate change increased the risk of likelihood (PR) in the northern part by 1.64 

(~40% in FAR), and a reduction in the southern part (Li et al., 2018); similar increase (~38%) 

is estimated for the 2016 summer mean (Yuan et al., 2018). Otto et al. (2018a) attributed storm-

related severe rainfall in England to anthropogenic climate change using observation- and 

model-based methods. The results illustrate that anthropogenic influences have increased the 

probability of such events by ~59%, but with large uncertainties. 

 
Figure 1.2 Changes in the probability of precipitation extremes exceeding the 99th percentile 

of daily precipitation for the global-mean warming of (a) 0.85℃ (present-day), (b) 2℃, and (c) 

3℃ relative to pre-industrial conditions. From Fischer & Knutti (2015). 

1.2.2.3  Seasonal-dependent variations 
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The seasonality of extreme precipitation influenced by global warming has also been argued in 

previous studies (Westra et al., 2014; Song et al., 2018; Trenberth & Zhang, 2018). Over the 

northern tropical land area, the 1979-2019 trend of annual precipitation displayed an obvious 

seasonal cycle based on observations and simulations. Notably, anthropogenic forcing results 

in a ~4-day delay of such seasonal cycle (Song et al., 2021). For European daily rainfall 

extremes, they were observed to increase in winter but decrease in summer when temperature 

rises (Berg et al., 2009). The response of extreme precipitation in California to global warming 

also shows a distinct seasonal variation, with more intense and frequent extremes in winter than 

in spring and fall based on CMIP5 models (Dong et al., 2019). In contrast, for the contiguous 

United States as a whole, more frequent but less intense wintertime rainstorms under warming 

were seen in regional model simulations (Dai et al., 2020). In China, the frequency of extreme 

rainfall shows a positive trend mainly in winter across southern areas, while opposite trends in 

summer and winter in northern regions are found (Tao et al., 2018).    

1.2.3  Possible mechanisms 

1.2.3.1  Impacts of large-scale circulations  

Human-induced global warming affects the behavior of large-scale circulations, which regulate 

regional moisture transport that feeds heavy precipitation (Liu et al., 2020). Numerous studies 

found that anthropogenic forcing has an influence on the East Asian Monsoon changes (Burke 

& Stott, 2017; Zhang & Zhou, 2019), resulting in an increase in precipitation in southern China 

while a decrease in northern parts (Day et al., 2018), which implies the possible response of 

monsoon circulation (Song et al., 2014). The western Pacific subtropical high (WPSH) and 

subtropical westerly jets (SWJ) − components of the East Asian summer monsoon (EASM) − 

are the main drivers of moisture transport and summer rainfall over eastern China (Wang & 

Zuo, 2016; Zhang et al., 2017). Under global warming, the WPSH and SWJ shift southward 
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probably due to the weaker meridional temperature contrast produced by the higher warming 

in mid-high latitudes than low-latitudes and thus decreased pressure gradient in mid-high 

latitudes (Li et al., 2010). The southward displacement of WPSH favors strong moisture 

transport and thus enhances summer rainfall in the Yangtze River valley (Xuan et al., 2011). 

Recent modeling studies have concluded that in boreal summer, anthropogenic greenhouse-gas 

emissions lead to an El Nin4o-like sea surface temperature pattern related to a weakened Walker 

circulation (Kociuba & Power, 2015), which suppresses convection over SC and thus reduces 

precipitation there (Lin et al., 2020). Attributions of extreme events conditioning on a particular 

feature of climate have also been explored. For example, inferred anthropogenic influence on 

the likelihood of heavy Australia precipitation during 2010-2012 when strong La Nin4 a 

conditions prevailed was model-dependent and not robust, highlighting the role of internal 

variability of the climate system (Lewis & Karoly, 2015).  

1.2.3.2  Thermodynamic versus dynamic effects 

Anthropogenic influences intensify precipitation extremes due to both thermodynamic and 

dynamic processes. Moisture budget analysis is a very useful tool for quantifying the 

contributions of these processes to precipitation and has been widely used for heavy rainfall at 

various scales. Modeling results agree that the thermodynamic component −  changes in 

atmospheric water vapor − has homogeneous positive and dominant contributions to heavy 

rainfall intensification globally, whereas the dynamic component − wind circulation change − 

has little or negative contribution at a global scale but modulates regional rainfall extremes 

(Seager et al., 2010; Chou et al., 2012; Pfahl et al., 2017; Norris et al., 2019). On the regional 

scale, the thermodynamic effect is the main contributor to sub-seasonal rainfall increases in 

North America, while dynamic processes dominate rainfall decreases in Mexico due to global 

warming (Dong et al., 2018). In contrast, positive dynamic contributions amplify the extreme 
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rainfall intensification in the Asian Monsoon region (Pfahl et al., 2017; Ali & Mishra, 2018) 

and the deep tropics (Norris et al., 2019).  

Besides, statistical methods can also be used to separate the dynamic (related to vertical motion) 

and thermodynamic contributions to precipitation changes (Emori & Brown, 2005; O’Gorman 

& Schneider, 2009; Chou et al., 2012; Pfahl et al., 2017; Ali & Mishra, 2018). Similar 

conclusions are drawn for global rainfall extremes. Contributions to regional extremes, on the 

other hand, differ according to the event. For example, the dynamic contribution (9% K-1) to 

sub-daily extreme rainfall increases in India is higher than the thermodynamic contribution (6% 

K-1) (Ali & Mishra, 2018). In addition, the human influencing thermal gradients could also 

modify the frontal circulation that closely affects precipitation changes (Kim & Kim, 2020).  

Recall that super-CC scaling of rainfall extremes is found for their past and future changes, 

highlighting the dynamic effect beyond the moisture-driven thermodynamic influence. To 

better understand such dynamics, the quasi-geostrophic omega equation has been utilized to 

examine vertical motion changes and their effects on extreme rainfall (O’Gorman, 2015; Nie 

et al., 2016, 2018; Li & O’Gorman, 2020). The findings show that as moisture amount increases 

under global warming, heavy rainfall increases and releases more latent heat, which enhances 

updraft motions and ultimately intensifies heavy precipitation at a super-CC rate. Another 

research, using circulation analogs methods to separate thermodynamic and dynamic influence 

on winter rainfall extremes in Southern UK, found that the former effect contributes two-thirds 

of the rainfall increase whereas the latter, which is related to circulation changes, contributes 

about one-third of the increase (Vautard et al., 2016).  

1.3  Motivation and objectives 

Human-induced global warming has substantially affected extreme precipitation worldwide in 

many aspects, and some of these extremes have caused flooding disasters, as introduced above. 
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Particularly in China, both hourly and daily precipitation extremes increased at the super-CC 

rate with global warming during 1970-2017 across eastern China based on high-quality gauge 

data (Chen et al., 2021). Robust increases in extreme rainfall or flooding events are also seen 

in southern areas (Zhai et al., 2005; Ding et al., 2007).  

The Pearl River Delta (PRD) region (defined as 21.5°N-24°N, 111.9°E-115.1°E), one of the 

largest megalopolises in China with a dense population and fast-growing economy, is 

vulnerable to hydrological extremes. Under a human-influenced warming climate, the PRD has 

been experiencing dramatic increases in the probability, intensity, and tendency of heavy 

rainfall during the last several decades according to historical records (Lenderink et al., 2011; 

Fu et al., 2013; Sun & Ao, 2013). The greatest concern from the public and policymakers is 

that how much of the PRD rainfall fluctuations resulted from human influence. Past studies 

have tried to address this issue with the use of GCMs outputs (Burke et al., 2016; Li et al., 

2018).  

However, as previously reported, the current global models usually have large biases when 

compared to observations. One bias is that most CMIP5 GCMs tend to produce precipitation 

more frequently but with lower intensity (Dai & Trenberth, 2004; Stephens et al., 2010; 

Asadieh & Krakauer, 2015; Donat et al., 2016; Trenberth et al., 2017); this is likely associated 

with the more convective precipitation in models (Sabeerali et al., 2015). Also, global models 

underestimate the observed trends of heavy precipitation (Min et al., 2011; Asadieh & Krakauer, 

2015; Borodina et al., 2017). These biases probably resulted from a wide range of uncertainties 

in simulating atmospheric circulations due to their coarse resolutions (Shepherd, 2014; 

Trenberth et al., 2015; Li et al., 2019). In contrast, RCMs with high spatial, convection-

permitting resolution can improve the representation of the observed rainfall extremes (Park et 

al., 2016). To our knowledge, so far there is no attribution study for PRD extreme rainfall using 
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RCMs. Therefore, a convection-permitting Weather Research and Forecast (WRF) regional 

model is utilized to fill this research gap.  

This thesis aims to achieve the following objectives from the perspective of multi-case statistics 

and individual case studies:    

• To examine the change of PRD precipitation extremes in the presence of human influence, 

for different seasons; 

• To investigate the extent to which extreme precipitation variations can be attributed to 

human forcing; and 

• To better understand the underlying mechanisms for human-forced precipitation changes, 

including both dynamic and thermodynamic influences.  

Yet there are many challenges in conducting event attribution analysis for extreme rainfall. For 

example, model biases in reproducing extreme rainfall (e.g., location, intensity) may affect the 

reliability of results. To minimize the model bias, a spectral nudging technique and large 

ensemble approaches are considered in model simulations. There are also technical challenges 

when creating a “counterfactual climate” in WRF, such as interpolation bias and imbalance of 

the artificial climate during integrations. Fortunately, many of these difficulties have been 

resolved, and more details will be presented in the methodology section. Overall, the findings 

in this thesis complement the attribution map and more importantly, will help us better 

understand the role of human influence in affecting rainfall extremes in this region. 

1.4  Roadmap of thesis  

In this thesis, impacts of human-induced climatic warming on a series of extreme precipitation 

events over the PRD region have been analyzed using the regional WRF model. Chapter 2 

introduces all data sets, model setting, experiment design, and various methodologies used. In 

particular, an attribution method of constructing a counterfactual climate in WRF (equivalent 
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to a reversal of the PGW downscaling technique) is described in Chapter 2.4.3, and its 

performance has been verified in Chapter 4. Attribution results are presented in Chapters 3, 4, 

and 5, whereas Chapter 6 encompasses discussions and main conclusions.  

In Chapter 3, how PRD extreme precipitation responses to human influence depends on seasons 

is explored, based on multi-case simulations. In total, forty extreme rainfall cases (23 in MJJAS 

and 17 in non-MJJAS) are selected, and then reproduced under the present and counterfactual 

(without human forcing) conditions in the model. Human-contributed warming signals in PRD 

are first estimated by comparing parallel experiments. Responses of those extremes to this 

warming are then examined in terms of their intensities and frequencies. Also, the seasonal 

difference in rainfall responses is analyzed. To further inspect the possible reason, the moisture 

budget equation is used to estimate the thermodynamic and dynamic contributions to the 

changes in rainfall extremes.  

Chapter 4 focuses on an extraordinary wintertime extreme precipitation event. Attributing this 

event to human influences is examined by conducting the same experiments as in Chapter 3. 

To separate human-related thermodynamic and dynamic impacts, an extra experiment (without 

human-forced thermodynamic influence) is carried out. Human impacts on this heavy rainfall 

intensity, and associated changes in large-scale atmospheric circulations, contributions from 

the moisture-driven thermodynamic process as well as vertical motion-related dynamic process 

are well elucidated.  

Similar to Chapter 4, the attribution of a pre-monsoon heavy rainfall event is conducted in 

Chapter 5 but draws an opposite conclusion. A plausible mechanism for human impacts on this 

particular event is addressed. Results from these two case studies suggest that human-induced 

warming climate could either intensify or suppress heavy rainfall in specific events over this 

region, which also depend on synoptic conditions.  
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Chapter 2  Data, model and methodology  

2.1 Outline of methods 

To quantify the seasonally dependent changes in extreme precipitation characteristics due to 

human influences, a series of extreme rainfall events from different seasons were selected and 

replicated using a numerical model forced by different initial and boundary conditions, with 

model results being further analyzed. Since the contribution of TC-induced rainfall to PRD’s 

annual rainfall is only about 20-35% (Khouakhi et al., 2017), this research focuses on non-TC-

induced extreme precipitation in PRD, as well as the associated thermodynamic and dynamic 

changes due to human-induced climatic warming, on both a statistical and case-by-case basis.  

In the first part of this thesis, over 200 historical extreme rainfall events that occurred over the 

PRD region during the 1998-2018 period were initially identified (see Chapter 2.4.1), based on 

the Tropical Rainfall Measuring Mission (TRMM) 3B42 satellite observations (see Chapter 

2.2.1). These cases were reproduced with the use of the Weather Research and Forecasting 

(WRF) regional model (see Chapter 2.3.1). Simulated rainfall was compared to in-situ 

observations (see Chapter 2.2.1), based on which 40 well-simulated extreme events were 

further selected for attribution analysis.  

The attribution of those extremes to human-induced warming can be done by re-simulating the 

selected 40 cases in WRF under an environment without human influences (see Chapter 2.3.2), 

through the pseudo global warming (PGW) downscaling technique (see Chapter 2.4.3). Human 

impacts on atmospheric circulations were derived from seven selected general circulation 

models (GCMs) participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5, 

see Chapter 2.4.2). A combination of measurements was used to evaluate the capacity of GCMs 

in simulating surface temperature (see Chapter 2.2.2). By comparing the outcomes of the two 
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sets of experiments described above, human impacts on extreme precipitation in rainy and non-

rainy seasons can be determined. To further explore how human activities affect rainfall 

extremes by altering the associated thermodynamic and dynamic processes, two individual 

heavy rainfall events (see Chapters 4 and 5) were focused on, with additional experiments 

carried out using WRF (see Chapter 2.3.2). Moreover, moisture budget analysis was utilized to 

address the thermodynamic and dynamic variations as a result of anthropogenic climate change 

(see Chapter 2.4.4).    

2.2 Observational and reanalysis data 

2.2.1 Rainfall datasets 

TRMM 3B42 product 

The Tropical Rainfall Measuring Mission (TRMM) is a research satellite operation from 1997 

to 2015,  which was jointly overseen by the National Aeronautics and Space Administration 

(NASA) and Japan Aerospace Exploration Agency (JAXA). It aims at monitoring the spatial-

temporal distribution and variability of tropical precipitation. The 3B42 precipitation estimate 

is one of the TRMM products that combine various measurements of satellites and rain gauges. 

The TRMM 3B42 version 7 product (Huffman et al., 2007), available at a 0.25° × 0.25° 

horizontal resolution (approximately 25 by 25 km) from 50°N to 50°S and 3-hourly temporal 

resolution for the 1998-2018 (https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_7/summary), 

is used here and 3-hourly data are accumulated to obtain daily mean precipitation in this study.   

Rain gauge-based datasets 

In addition, two rain gauge-based data sets of daily precipitation were used for evaluating the 

WRF-simulated rainfall. The first in-situ dataset is developed by the National Meteorological 

Information Center of the Chinese Meteorological Administration (CMA, http://data.cma.cn), 
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with the locations of 29 weather stations considered within the PRD region depicted in Figure 

2.2. Grided daily analysis of precipitation from the Climate Prediction Center (CPC) unified 

precipitation project that is underway at the National Oceanic and Atmospheric Administration 

(NOAA) was also considered (Chen et al., 2008). It is a long-term continental-scale product 

based on a dense network of rain-gauge data collected from multiple agencies. The CPC daily 

precipitation data used has a 0.5 °  ×  0.5 °  spatial resolution from 1979 onwards 

(https://psl.noaa.gov/data/gridded/). For model evaluation, all rainfall data are interpolated 

onto the same spatial grid as in WRF simulations. 

2.2.2 Temperature datasets 

Observed monthly surface temperature data are used for CMIP5 model evaluation. Surface 

temperature over land from the Climatic Research Unit Time Series (CRU TS) version 3 

datasets (Harris et al., 2014) has a spatial resolution of 0.5 °  ×  0.5 ° , for 1901-2006 

(https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_3.00). Global sea surface temperature 

(SST) is taken from the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) dataset 

(Rayner et al., 2003), with a 1.0 °  ×  1.0 °  resolution from 1870 onwards  

(https://www.metoffice.gov.uk/hadobs/hadisst/). To facilitate comparison with CMIP5 models, 

the two datasets are combined by bilinearly interpolating the data onto a uniform grid of 2.5° 

× 2.5°, from 1901 until 2005.  

2.2.3 ECMWF reanalysis datasets 

The European Centre for Medium-Range Weather Forecasts (ECMWF) produces a set of 

global atmospheric reanalysis datasets, which were used as the IBCs in WRF simulations. Here 

six-hourly ERA-Interim reanalysis (Dee et al., 2011) was used, at 0.75° × 0.75° resolution with 

37 pressure levels from the ground up to 1 hPa, covering the period from January 1979 through 
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August 2019. In the attribution of the pre-monsoon heavy rainfall case, ERA5 reanalysis data 

(Hersbach et al., 2020) was used instead, due to its outperforming the ERA-Interim as forcing 

data used in simulations (not shown). ERA5 provides hourly estimates of atmospheric variables 

with a 0.25° × 0.25° spatial resolution and 37 pressure levels.        

2.3 Model and experiment design 

2.3.1 Model description 

Numerical experiments were conducted using the Advanced Research WRF (WRF-ARM) 

model version 3.8.1 (Skamarock, 2008) in a one-way nesting setup. The three nested domains 

centered at the PRD region are shown in Figure 2.1. The outermost domain has a horizontal 

grid resolution of 50 km × 50 km (79 x 61 grid cells), covering most of southeast Asia. The 

middle and innermost domains encompass the SC and the entire PRD region, with resolutions 

of 10 km × 10 km (136 x 116 grid cells) and 2 km × 2 km (181 x 166 grid cells), respectively. 

There are 45 vertical layers from the surface up to 50 hPa, with 18 layers being concentrated 

in the lowest 1.5 km to resolve the planetary boundary layer (PBL) dynamics.  

The main physical schemes employed for all the domains include the Bougeault-Lacarrere PBL 

scheme (Bougeault and Lacarrere, 1989), the rapid radiative transfer model for both shortwave 

and longwave radiation parameterizations (Iacono et al., 2008), and the unified Noah land 

surface model (Tewari et al., 2004). For multi-case analysis (see Chapter 3), the WRF single-

moment six-class (WSM6) microphysics (Hong and Lim 2006) and the Grell 3D ensemble 

cumulus scheme (Grell and Dévényi, 2002) were used. For individual case study (see Chapters 

4 and 5), different combinations from two microphysics schemes, i.e., the Thompson 

(Thompson et al., 2008) and WSM6 microphysics, and three cumulus parameterization 

schemes, namely the Kain-Fritsch (Kain and Kain, 2004), Betts-Miller-Janjic (Janjic, 1994) 

and Grell 3D schemes, were used for multi-physics ensemble integrations (see Chapter 2.3.2 
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for more details). In all simulations, the microphysics schemes were applied for all domains, 

whereas the cumulus schemes were enabled for the outer and middle domains but disabled for 

the innermost domain as its horizontal resolution is fine enough for the model to fully resolve 

the moist convective physics. 

In addition, the sensitivity of WRF performance on SST update is checked for eighteen extreme 

rainfall events that occurred between April and September over the PRD. It was found that the 

magnitude of daily precipitation offshore is evidently underestimated in fixed SST runs (see 

Figure 2.2b); it becomes more comparable to observations when SST is updated during WRF 

integrations (see Figure 2.2c). As a result, the six-hour updated SST field was used in all 

simulations. 

The spectral nudging approach has been widely adopted in regional model simulations to 

constrain large-scale features to be close to observations while allowing small-scale features to 

evolve freely (Aiguo Dai et al., 2020; C. Zhang et al., 2016). For this reason, spectral nudging 

was applied to the zonal and meridional wind components above 500hPa in the outermost 

domain only (P. Liu et al., 2012; Y. Ma et al., 2016), at a scale of approximately 1300 km (1500 

km) in the zonal (meridional) direction. The strength of nudging is 0.0003 s-1. Details about 

model descriptions can be found at http://www2.mmm.ucar.edu/wrf/users.    
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Figure 2.1 Spatial distribution of topographic height (units: km) over the three nested domains 

in WRF. 

 
Figure 2.2 Spatial distribution of the averaged daily precipitation (units: mm d-1) occurred 

from April to September, obtained from (a) in-situ observations, (b) WRF simulations with 

fixed SST, and (c) WRF simulations with SST updated every six hours. 

2.3.2 Experiment design  

In order to attribute the change in PRD precipitation extremes to human influences, a series of 

experiments were carried out by dynamically downscaling extreme rainfall events under 

various IBCs in WRF. In the first part of this work (see Chapter 3), WRF simulations of the 

selected extreme rainfall cases (see Chapter 2.4.1 for case selection) were conducted under the 

baseline and counterfactual climate conditions. Control simulations (hereafter referred to as 

CTL runs) were forced with IBCs taken from ERA-Interim reanalysis, which produces 

meteorological fields with both anthropogenic and natural forcings. The counterfactual 

simulations (referred to as NAT runs) were forced by the natural-forcing only IBCs, in which 

anthropogenic perturbations in the physical fields are removed through the PGW technique 

(see Chapter 2.4.3). Here the physical fields refer to surface and air temperature, specific 

humidity, and horizontal wind components. The difference in the two sets of runs thus 

represents the human impacts on rainfall extremes. Each experiment is integrated over a 5-day 
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period (see Table 2.4), with the first day discarded as spin-up time and the following analyses 

based on the remaining four days.       

For the attribution of two specific extreme cases (see Chapter 4 for a wintertime rainstorm and 

Chapter 5 for a pre-monsoon heavy rainfall event), three sets of experiments (see Table 2.1) 

were designed to probe thermodynamic and dynamic contributions separately to heavy rainfall 

changes due to human influences. Besides the control runs mentioned above, two sets of 

counterfactual simulations were performed by forcing the model at the IBCs with 1) human-

induced thermodynamic (i.e., temperature and specific humidity) perturbation removed 

(hereafter DTQ run), and 2) both human-related thermodynamic and dynamic (i.e., horizontal 

wind circulation) perturbations removed (hereafter DTQW run) from ERA-Interim. Hence, 

human-forced thermodynamic and dynamic variations that affect rainfall can be inferred from 

the difference of CTL and DTQ runs, as well as DTQ and DTQW runs, respectively.  

It should be noticed that there might be large model uncertainty when picking one combination 

of physics parameterizations to do the downscaling using WRF. This is due to the fact that the 

sensitivity of climate variables to different physics schemes varies (Evans et al., 2012). Such 

uncertainty can be reduced by taking an average over all the simulated cases. When it comes 

to the individual case simulations, however, an ensemble of simulations is commonly produced 

to reduce model bias (S. Y. S. Wang et al., 2018).    

For the extreme rainfall event of December 14-17, 2013 (see Chapter 4), a 6-member multi-

physics ensemble based on the combination of two microphysics and three cumulus 

parameterization schemes (listed in Table 2.2) was generated, with integrations spanning from 

0000 UTC 9 December to 0000 UTC 18 December 2013. The ensemble mean of the multi-

physics integrations was used as it outperforms individual ensemble members in replicating 

the atmospheric circulation and precipitation. The first 48 hours were treated as spin-up and 

excluded in the subsequent analysis. 
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For the pre-monsoon precipitation on 15 May 2016 (see Chapter 5), it was found that a large 

ensemble was needed to reduce model uncertainties. Here, a 14-member ensemble comprising 

various initialization times and physics schemes was used (see Table 2.3). The simulations of 

ensemble members were initiated at a six-hour interval from 0000 UTC 12 May to 1200 UTC 

13 May, all of which ended at 0000 UTC 18 May.  

Table 2.1 Model experiments for attribution of specific extreme events.   

EXP IBCs Description 

CTL ERA-Interim (ERAI) Factual climate with all forcing 

DTQ ERAI - ∆(T, Q) Climate without human-forced thermodynamic change 

DTQW ERAI - ∆(T, Q, U, V) 
Climate without human-forced thermodynamic and 

dynamic changes 

 

Table 2.2 Six-member ensemble of different microphysics and cumulus schemes used in WRF.  

No. EXP Microphysics Cumulus schemes 

1 WG3 WSM6 Grell 3D 

2 WKF WSM6 Kain–Fritsch 

3 WBMJ WSM6 Betts–Miller–Janjic 

4 TG3 Thompson Grell 3D 

5 TKF Thompson Kain–Fritsch 

6 TBMJ Thompson Betts–Miller–Janjic 
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Table 2.3 A list of 14 ensemble members performed for the pre-monsoon rainfall simulation. 

See text for details.  

No. Starting time (UTC) Microphysics Cumulus schemes 

1 0000 12/05 Thompson Kain–Fritsch 

2 0600 12/05 Thompson Kain–Fritsch 

3 1200 12/05 Thompson Kain–Fritsch 

4 1800 12/05 Thompson Kain–Fritsch 

5 0000 13/05 Thompson Kain–Fritsch 

6 0600 13/05 Thompson Kain–Fritsch 

7 1200 13/05 Thompson Kain–Fritsch 

8 0000 12/05 WSM6 Kain–Fritsch 

9 0600 12/05 WSM6 Kain–Fritsch 

10 1200 12/05 WSM6 Kain–Fritsch 

11 1800 12/05 WSM6 Kain–Fritsch 

12 0000 13/05 WSM6 Kain–Fritsch 

13 0600 13/05 WSM6 Kain–Fritsch 

14 1200 13/05 WSM6 Kain–Fritsch 

 

2.4 Methods for modeling and analysis 

2.4.1 Selection of extreme rainfall events 

We define extreme precipitation as a day with regional accumulated daily rainfall greater than 

the 95th percentile of all wet days (> 0.1 mm d-1) based on data averaged over the entire PRD 

region for the 1998-2018 period, using TRMM 3B42 data. The extreme case encompasses two 

days before and two days after the extreme precipitation day, spanning totally 5 consecutive 

days. All of the cases were classified as non-TC (tropical cyclones) cases, i.e., they were not 

induced by TC systems. 215 extreme rainfall cases were identified, and then reproduced by 



 30 

WRF. They were evaluated against station observations, by comparing the root mean square 

error (RMSE) of the temporal and spatial distribution of daily precipitation, respectively (see 

Figure 2.3). Among these 200 and more cases, 40 well-reproduced extreme rainfall events 

(listed in Table 2.4) were chosen for attribution analysis. The further selected events were 

classified into two groups: 23 events during the rainy season (May to September, abbreviated 

as MJJAS) and 17 events during the rest of the calendar months (non-MJJAS). Only rainfall 

that falls over land was analyzed in this study.  

 
Figure 2.3 The temporal (blue) and spatial (red) RMSE values (units: mm d-1) for each extreme 

rainfall case. 

Table 2.4 A list of case periods of the selected 40 extreme rainfall events that occurred in the 

rainy season (MJJAS) and non-rainy season (non-MJJAS). 

MJJAS (23 cases) Non-MJJAS (17 cases) 

09 - 14/06/2000 13 - 18/06/2010 13 - 18/02/1998 06 - 11/11/2011 

07 - 12/05/2001 22 - 27/06/2010 29/03 - 03/04/2004 13 - 18/01/2012 

09 - 14/06/2002 03 - 08/08/2010 21 - 26/03/2006 29/11 - 04/12/2012 

29/06 - 04/07/2002 08 - 13/09/2010 19 - 24/11/2006 28/04 - 03/05/2013 

11 - 16/06/2003 20 - 25/06/2012 22 - 27/04/2007 13 - 18/12/2013 

10 - 15/05/2004 18 - 23/05/2013 23 - 28/01/2008 10 - 15/01/2015 

06 - 11/06/2006 16 - 21/05/2014 03 - 08/10/2008 18 - 23/03/2016 

24 - 29/07/2006 21 - 26/05/2015 20 - 25/04/2010 04 - 09/01/2018 

17 - 22/05/2007 01 - 06/06/2017 10 - 15/10/2011  
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06 - 11/06/2007 05 - 10/09/2017   

26 - 31/05/2008 05 - 10/05/2018   

15 - 20/06/2008    

 

2.4.2 Selection of CMIP5 GCMs 

To eliminate the CMIP5 projections that are unable to mimic historical warming (Jones et al., 

2013), we evaluated the decadal trends in surface temperature (ST) averaged over SC during 

the 1901-2005 period, obtained from the historical runs of 18 CMIP5 global models against 

the observed trend (see Figure 2.4). All of these models have both historical and natural-only 

forcing (historicalNat) runs available for that period. The ST trend was computed by 

subtracting the 1901-1920 means from the 1986-2005 means, and this difference was divided 

by the number of decades. 10 CMIP5 models (highlighted by the blue background in Figure 

2.4) were found to give ST tends (> 0.04 °C per decade) comparable to the observed one 

(roughly 0.08 °C per decade). ST trend of the ten-model ensemble mean is 0.07 °C per decade. 

Previous studies also report similar underestimation in global models (Allan and Soden, 2008; 

Min et al., 2011).   

Second, we compared ST in the historical run with that in the historicalNat run from individual 

GCMs (see Figure 2.5). Seven models were found to have noticeable differences between the 

two runs since 1980 or so (highlighted in blue in Figure 2.5), and thus were selected for 

obtaining robust human forcing signals. Outputs from the selected 7 GCMs were interpolated 

onto a 2.5° × 2.5° spatial grid for consistency. More detailed information about the selected 

CMIP5 models is listed in Table 2.5.  
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Figure 2.4 Surface temperature trends (units: °C per decade) for the period of 1901-2005, 

averaged over domain 2 (SC), derived from the historical run of individual CMIP5 models. 

Also shown the selected models and multi-model ensemble mean (MME) highlighted by a blue 

background, as well as the observed trends (OBS) highlighted by an orange background. See 

text for details.  

 



 33 

 
Figure 2.5 Time evolution of annual mean surface temperature (units: °C) over the SC from 

1861-2005 from the (a) BNU-ESM, (b) CCSM4, (c) CanESM2, (d) GFDL-ESM3M, (e) IPSL-

CM5A-LR, (f) IPSL-CM5A-MR, (g) MIROC-ESM-CHEM, (h) MIROC-ESM, (i) MRI-CGCM3, 

(j) BCC-CSM1-1. Red and blue lines represent results from historical and historicalNat runs, 

respectively. Models selected for obtaining anthropogenic forcing signals are highlighted by 

the blue background. See text for details.   
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Table 2.5 Descriptions of the CMIP5 GCMs used in this study.  

 

2.4.3 PGW downscaling technique 

The PGW technique was applied in our counterfactual simulations with the absence of human 

influences. Human-induced perturbation of field X, i.e., Δ𝑋%&'(), is derived from the monthly 

average of the twenty-year (1986-2005) mean difference between historical and historicalNat 

runs of the CMIP5 seven-model ensemble mean:  

Δ𝑋_%&'() = (𝑋_+,#-./,012 − 𝑋_+,#-./,01231-)888888888888888888888888888888888888|1986-2005            (2.1) 

It should be recalled that the ensemble mean of the selected 7 GCMs underrates the observed 

ST trend (see Chapter 2.4.2). Here we defined a ratio of observations (OBS) to multi-model 

ensemble-mean (MME) projections as the scale factor that is multiplied by the ensemble-mean 

perturbations, to resolve a more realistic anthropogenic perturbation, Δ𝑋_%&'()|1456#-74: 

No. IPCC ID Institute and Country 
Resolution 
(Lon×Lat) 

Mean 
anomaly of 
initial Tsfc 
in D02 (℃) 

1 Bcc-csm1-1 
Beijing Climate Center, China 
Meteorological Administration, 

China 
128×64 0.63 

2 CanESM2 
Canadian Centre for Climate 

Modelling and Analysis, 
Canada 

128×64 0.61 

3 CCSM4 National Center for 
Atmospheric Research, USA 288×192 0.74 

4 GFDL_ESM2M Geophysical Fluid Dynamics 
Laboratory, USA 144×90 0.72 

5 IPSL-CM5A-LR L’Institut Pierre-Simon 
Laplace, France 96×96 1.03 

6 IPSL-CM5A-MR L’Institut Pierre-Simon 
Laplace, France 96×96 0.79 

7 MRI-CGCM3 Meteorological Research 
Institute, Japan 256×128 0.62 
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Δ𝑋_%&'()|1456#-74 = 89:
&&;

 × Δ𝑋_%&'()                                 (2.2) 

where OBS and MME refer to the observed and CMIP5-produced trends of ST, respectively, 

derived from Figure 2.4. Consider that the difference between temperature in GCM’s 

simulations and observations varies slightly with seasons (not shown), we adjusted human-

induced perturbations in different seasons by the same scale factor. Then, the adjusted monthly 

perturbations were interpolated linearly on each model grid over the outermost domain for the 

corresponding case simulations, after that, subtracted from the IBCs (ERA-Interim) in WRF. 

One potential drawback of applying this adjustment approach is that we used the scale factor 

derived from temperature trends to adjust perturbations in all physical fields (see details in 

Chapter 2.3.2). In fact, with the exception of temperature observations, there are few good-

coverage and high-quality gauge-based data available for model validation. We thus assume 

that the GCM’s bias on temperature is representative of biases on other variables, and that this 

would not substantially alter the results.  

Noted that changes in meteorological fields due to anthropogenic influences vary significantly 

among the individual CMIP5 models (Lauer et al., 2013). The use of the multi-model ensemble 

mean in Eq. (2.1) can minimize such model uncertainty and internal climate variability (Liu et 

al., 2017). Based on this seven-model ensemble mean, monthly anomalies of surface and 1000-

300 hPa tropospheric temperature, as well as low-level specific humidity (1000-850 hPa), are 

computed (see Figure 2.6). During the MJJAS season, the mean surface (troposphere) has 

warmed by about 1℃ (1.2℃), and low-level water vapor increment reaches approximately 0.7 

g kg-1 under warming.    

The above approach is equivalent to the reverse of the PGW method described by Kimura and 

Kitoh (2007) and Sato et al. (2007). The method allows one to estimate the anthropogenic 

influences on a specific extreme event, which makes it easier to perform event attribution 
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analysis based on dynamical downscaling. However, one should also note the difference in 

resolution, parameterization schemes used between the regional and global models (Chen et 

al., 2019); sufficient spin-up time is required to ensure the regional model components reach 

equilibrium after applying climate perturbations. For each case, the 11-day WRF simulations 

over the outermost domain for the baseline and counterfactual climates were carried out, 

starting from 3 days before the control run. The latter 8-day mean differences in output fields 

(see Chapter 2.3.2 for physical fields used in each experiment) between the control and 

counterfactual runs were computed as adjusted natural-forced perturbations. They were then 

subtracted from baseline IBCs and regarded as adjusted anthropogenic perturbations. 

 
Figure 2.6 Monthly differences in surface temperature (orange bar, units: ℃), tropospheric 

temperature (green bar, units: ℃) averaged from 1000-300 hPa and specific humidity (purple 

bar, units: g kg-1) averaged from 1000-850 hPa averaged from 1986-2005 over the SC between 

historical and historicalNat runs of CMIP5 seven-model ensemble mean. See text for details. 

2.4.4 Moisture budget analysis 

The moisture budget analysis was also used to study extreme rainfall changes under a human-

induced warming climate. The moisture budget equation is expressed as follows: 

𝜕 < 𝑞 >
𝜕𝑡 = 𝐸 − 𝑃−< ∇ ∙ 𝑉D⃗ 𝑞 > 																																									 (2.3) 
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where <∙>	= − <
=!>

∫∙ 𝑑𝑝, denotes column-integration through the 1000-100 hPa troposphere, 

𝜌? and 𝑔	are the density of water and the acceleration of gravity, respectively, and 𝑝 is pressure. 

The LHS term in Eq. (2.3) is the rate of change of total water vapor. On the RHS, 𝐸 is surface 

evaporation, 𝑃 is precipitation, q is specific humidity, and 𝑉D⃗  is horizontal vector winds. The 

third term on the RHS describes vertical-integrated moisture flux convergence (VIMFC). 

Noted that evaporation (E) and water vapor changes (@ABC
@-

) are relatively small for intense 

rainfall events (Banacos & Schultz, 2005), precipitation is primarily balanced by the VIMFC 

term. Hence, the human-induced changes in precipitation 𝛿𝑃 could be estimated by 

𝛿𝑃 ≈ −𝛿 < ∇ ∙ 𝑉D⃗ 𝑞 > 

							≈ −< 𝛿𝑞∇ ∙ 𝑉D⃗%DE > −	< 𝛿𝑉D⃗ ∙ ∇𝑞%DE >																											 

											−< 𝑞%DE∇ ∙ 𝛿𝑉D⃗ > −	< 𝑉D⃗ %DE ∙ ∇𝛿𝑞 > +	𝑁𝐿												(2.4) 

where 𝛿 represents for the variations resulting from human influences, i.e., the control minus 

counterfactual runs. Subscripts CTL denotes the control run. The nonlinear term (𝑁𝐿), such as 

surface quantities and changes in both mean humidity and winds, is ignorable due to its small 

contribution (Seager et al., 2010). The transient eddies are also neglected in progressing Eq. 

(2.3) to Eq. (2.4) because of the small deviation from their time mean.  

In order to examine the thermodynamic and dynamic contributions to precipitation changes, 

Eq. (2.4) is further divided into 

𝑇𝐻 = −< ∇ ∙ S𝑉D⃗ %DE 𝛿𝑞T > 																																																				 (2.5)	

𝐷𝑌 = −< ∇ ∙ S𝑞%DE 𝛿𝑉D⃗ T > 																																																				 (2.6)                                       

following Seager et al. (2010) and Lee et al. (2017). The thermodynamic contribution (𝑇𝐻) in 

Eq. (2.5) is associated with changes in water vapor; the dynamic contribution (𝐷𝑌) in Eq. (2.6) 
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is related to wind circulation changes. All these terms were calculated based on daily outputs 

in each model grid. 
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Chapter 3 Attribution of extreme rainfall characteristics to human 

influences based on multi-case simulations 

In this chapter, 40 extreme rainfall events that occurred over PRD are chosen and reproduced 

using the WRF model, under climate conditions with and without human forcing. Differences 

between the two sets of simulations can be attributed to human influences. Variations in both 

frequency and magnitude of those extremes caused by human activities are quantified. The 

seasonal dependence of rainfall changes is further examined, in terms of the MJJAS and non-

MJJAS seasons. To understand the mechanism responsible for these changes, moisture budget 

analysis was used to assess changes in dynamic and thermodynamic components that affect 

rainfall changes. 

3.1 WRF model evaluation 

3.1.1 Evaluation of synoptic conditions 

Before carrying out the attribution analysis, we first evaluate the model’s performance in 

capturing prognostic variables that affect the rainfall processes, and also characteristics of 

precipitation extremes. Figure 3.1 compares the multi-case mean temperature, geopotential 

height, and horizontal wind circulation at different pressure levels simulated by WRF CTL runs 

with ERA-Interim data. Both wind patterns and magnitudes at various levels over the South 

China PRD area were replicated by WRF reasonably well, with improved capability to simulate 

the 250-hPa wind circulation due to the use of spectral nudging. Over PRD, WRF reproduces a 

warmer mid-to-upper troposphere, especially at the 500-hPa level, while there is no appreciable 

difference in low-level temperature as compared to observations (see Figure 3.1c, f, i). It can 

also be seen that WRF slightly overpredicts the geopotential heights at 250 hPa and 500 hPa, 
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but underestimates the 850-hPa geopotential height in this domain. During extreme rainfall 

events, a strong upper-level westerly is observed over the mid-latitudes, accompanied by a low-

level southwesterly wind over SCS and northeast flow over the northern area (see Figure 3.1a, 

d, g). It is noticed that winds at 250-hPa and 500-hPa levels become strong in the East China 

Sea in the WRF simulations, but the location is far from our target region.   

Simulated precipitable water, moisture flux transport, and 500-hPa vertical velocity are also 

compared with ERA-Interim (see Figure 3.2). The results indicate that precipitable water and 

moisture transport over SC match well with reanalysis, although moisture amounts over some 

inland areas are slightly overestimated (see Figure 3.2c). On the other hand, there is a negative 

bias in precipitable water over the ocean and marine continents of ~7 mm (i.e., ~9% relative to 

reanalysis), with enhanced northward moisture transport also seen in the WRF simulations. The 

observed ascending centers (see black contours in Figure 3.2a) are accurately captured by the 

model, albeit with a slight westward shift over SC. These comparisons overall demonstrate 

WRF’s ability to reproduce essential synoptic features in the region.  
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Figure 3.1 Comparison in composite fields between model simulations and observations. Air 

temperature (shading, units: ℃), geopotential height (contour, units: m) and horizontal wind 

circulation (vectors, units: m s-1) at (a, b, c) 250 hPa, (d, e, f) 500 hPa and (g, h, i) 850 hPa, 

respectively. These fields are computed from the temporal average of the entire extreme rainfall 

cases over the outermost domain from (a, d, g) ERA-Interim reanalysis and (b, e, h) WRF CTL 

simulations, as well as (c, f, i) their differences, i.e., CTL simulations minus ERA-Interim. The 

reference scale vectors are shown at the top right. 
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Figure 3.2 Same as Figure 3.1, but for precipitable water (shading, units: mm), 500-hPa 

pressure velocity (< -0.1 Pa s-1 shown by black contours), and column-integrated moisture flux 

transport (vectors, units: kg m-1 s-1). The reference scale vectors are shown at the top right. 

3.1.2 Rainfall validation 

Simulated intensity and frequency of daily rainfall extremes are also compared with comparing 

with observations. Figure 3.3 presents the daily-mean rainfall in the outermost WRF domain 

and those based on TRMM satellite and rain gauges. The maximum rainfall zone concentrated 

over Guangdong Province (109.6˚-117.3˚E, 20.1˚-25.6˚N) of China is successfully captured by 

the model, with intensities comparable to gauge-based observations (see Figure 3.3b, c). 

However, the simulated magnitude of daily precipitation in the middle and eastern Guangdong 

Province is found to be about 8 mm per day (~28%) smaller than TRMM 3B42 data (see Figure 

3.3a). This, however, might be due to the overestimation of heavy precipitation by TRMM 

3B42 (X. Huang et al., 2018; Prakash et al., 2016).   

We use stational observations to further examine the simulated daily rainfall over PRD. Each 

station observation is directly compared with the nearest model grid output. It can be seen that 

rainfall over inland areas agrees well with in-situ observations, with a low bias of within 7 mm 

d-1; on the other hand, the coastal rainfall is noticeably underpredicted by WRF, with a relatively 

large bias of ~10 mm d-1 or more (see Figure 3.4a, b, c). The probability density function (PDF) 

of daily rain intensities based on wet days (> 0.1 mm d-1) from all selected extreme events is 
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shown in Figure 3.4d. There is a less frequent occurrence of moderate to heavy precipitation 

(> 20 mm d-1), and a higher frequency of light rainfall (< 10 mm d-1) in WRF when compared 

with observations. The relative bias of simulated frequency is roughly 15.6% averaged for rain 

rates in 10~200 mm d-1, demonstrating that WRF overestimates the rainfall frequency. This 

underestimation of heavy rainfall frequency probably resulted from the less intense coastal 

rainfall in WRF (see Figure 3.4b). In general, the model is able to reproduce the large-scale 

synoptic conditions of those extreme events over the PRD region, with reasonable magnitude 

and frequency of daily precipitation. 

 
Figure 3.3 Daily precipitation (units: mm d-1) averaged from all the selected extreme rainfall 

events during the period of 1998-2015 over the outermost domain, obtained from (a) TRMM 

3B42 satellite product, (b) CPC gauge-based observations, and (c) WRF CTL simulations. 
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Figure 3.4 Daily precipitation (units: mm d-1) averaged from all the extreme rainfall events 

over the PRD (D03), from (a) station observations (OBS), (b) WRF control runs (CTL), and (c) 

their difference, i.e., CTL minus OBS. (d) Probability density function (PDF) distribution of 

daily rainfall over the PRD from OBS (black) and CTL (red). Mean bias shown at the upper 

right, is defined as the frequency difference between CTL and OBS relative to OBS. The insert 

figure depicts the PDF of heavy to extreme rainfall that rain rates greater than 80 mm d-1. 

3.2 Attribution analysis  

3.2.1 Human influences on temperature 

Human influences on PRD rainfall extremes and related regional climate are now investigated 

by comparing the control and counterfactual simulations (see Chapter 2.3.2 for details of 

experiments design). Figure 3.5 depicts human impacts on the near-surface and tropospheric 

temperature averaged over extreme events selected for MJJAS and non-MJJAS seasons. As 
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seen from vertical profiles of air temperature anomaly, i.e., the CTL minus NAT runs (see 

Figure 3.5a), the 1000-500 hPa tropospheric temperature averaged from the entire events in 

PRD has increased by roughly 0.9 ℃, which can be attributed to human activities. Within the 

1000-300 hPa layer, extreme cases in the non-MJJAS season clearly show a stronger vertical 

gradient of temperature anomaly than cases in MJJAS do. The spatial distribution of 2-m 

temperature change over PRD suggests that anthropogenic forcing has led to an increase of 

near-surface temperature by 0.9 to 1.1 ℃ for cases in MJJAS and 0.6 to 0.8 ℃ in non-MJJAS 

season (see Figure 3.5 b, c). More robust anthropogenic warming is seen over PRD megacities 

than in surrounding rural areas, regardless of seasons. Also, the land surface tends to warm up 

more noticeably than oceanic areas, indicating a larger land-sea contrast in MJJAS due to 

human influences, which is consistent with previous research (Joshi et al., 2008).  

 

Figure 3.5 Difference between temperature (units: °C) from CTL and NAT runs over the PRD 

region during MJJAS (b) and (c) non-MJJAS season at 2m, as well as (a) vertical profiles of 

its area-averaged values.  

3.2.2 Human-induced variations in rainfall characteristics 

The magnitudes of daily-mean and extreme (above 95th percentile) precipitation based on all 

the selected cases from the CTL and NAT simulations, as well as the corresponding relative 

changes, are depicted in Figure 3.6 and Figure 3.7, respectively. Relative changes in rainfall 
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here are computed from the difference between CTL and NAT runs relative to NAT runs. As 

seen from daily-mean rainfall in CTL (see Figure 3.6a, d), the maximum rainfall is over 45 

mm d-1 in MJJAS, and it reaches 34 mm d-1 in the non-MJJAS season. The rainfall center in 

MJJAS is located in the northeastern part of PRD, while it is seen over Guangzhou city 

(23.07 °N in latitude and 113.15 °E in longitude) for non-MJJAS. In addition, low-level 

southwesterly winds are dominant over PRD in MJJAS; in non-MJJAS season, the winds have 

more southerly components. Rainfall in NAT becomes less intense over most inland areas in 

the absence of human influences, especially in non-MJJAS as the rainfall core disappeared (see 

Figure 3.6b, e). In particular, human-related warming has intensified daily-mean rainfall 

substantially by 10~70% over inland while suppressing coastal rainfall by around 20%, as seen 

from the relative changes in Figure 3.6c, f. This reflects a slight northward shift of heaviest 

rainfall in CTL, which is likely contributed by the relatively stronger southerly winds in this 

run, bringing adequate moisture from SCS to inland areas. For extreme rainfall (above 95th 

percentile), the maximum rainfall reaches 243.5 mm d-1 (247.5 mm d-1) in CTL and 230 mm d-

1 (234.3 mm d-1) in NAT runs for the cases in MJJAS (non-MJJAS) season (see Figure 3.7a, 

b, d, e). Similar results of rainfall pattern changes are found for extreme precipitation, but with 

more robust anomalous signals (see Figure 3.7c, f). These greater changes reflect that extreme 

rainfall in PRD is more sensitive than the mean to anthropogenic warming, regardless of 

seasons. This result is corroborated in many regions of the globe based on climate models (M. 

R. Allen & Ingram, 2002; Emori & Brown, 2005; Myhre et al., 2019).  

Human-induced variations in daily rainfall frequency during different seasons are also analyzed 

based on all wet days. Compared to the CTL runs, the frequencies in NAT are enhanced for 

light to moderate rainfall (≤ 50 mm d-1 in MJJAS and 30 mm d-1 in non-MJJAS), but are 

reduced for heavy to extreme rainfall as a result of anthropogenic warming (see Figure 3.8). 

To quantify such human-induced frequency changes, the ratio of rainfall frequency in the CTL 
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runs relative to the NAT runs is computed and given by the black line in the insert figure of 

Figure 3.8. It can be seen from Figure 3.8a that for cases in MJJAS, their frequency ratios 

increase gradually from 1.1 to over 1.3, with increasing rain rates of above 80 mm d-1. In other 

words, human influences are responsible for a 10~30% increment in the occurrence of extreme 

daily rainfall in MJJAS. For non-MJJAS cases, their probability ratio increases linearly up to 

over 1.4 and then decrease below 1.1 when rain rates exceed 150 mm d-1 (see Figure 3.8b), 

corresponding to above 99th percentile (see Figure 3.9b). The reduction of frequency ratio may 

be related to the short number of such extreme rain rates in non-MJJAS compared to MJJAS. 

The further comparison indicates that the ratios in non-MJJAS are greater than those in MJJAS 

for rain rates between 80 and 170 mm d-1, implying that non-MJJAS rainfall occurs more 

frequently with warming. The more extreme precipitation occurs, the more latent heat can be 

released to warm up the middle troposphere (see red line in Figure 3.5a). Overall, 

anthropogenic warming contributes to an increase in the frequency of heavy precipitation (> 80 

mm d-1) of at most 34% and 42% for the MJJAS and non-MJJAS season, respectively. Similar 

changes in precipitation frequency are also found for tropic rainfall extremes (Chou et al., 2012). 

We next examine changes in daily precipitation intensity in response to human-induced 

warming. Figure 3.9 provides the distribution of rainfall intensity in the CTL and NAT runs, 

as well as the corresponding relative changes, for percentiles from 85% to 99.5% of daily 

rainfall, with a 0.1% bin interval. The relative changes of rainfall in MJJAS show a continuous 

increase from 6% to 10% for 85th to 97th percentile rainfall and then drop to 8% when rain rates 

exceed 97th percentile (see Figure 3.9a), though the corresponding frequency keeps rising along 

with rain rate increases (see Figure 3.8a). The mean rate of increase with a 0.9~1.1 ℃ domain-

averaged near-surface warming derived from Figure 3.5b reaches roughly 8%, nearly the CC 

scaling of 7% K-1 (see Figure 3.9a). By contrast, increases in non-MJJAS rainfall intensity (< 

95th percentile) are found to be more variable, peaking at 12.4%, followed by a substantial 
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reduction when rain rates exceed the 97th percentile (see Figure 3.9b). The overall magnitude 

in the 85-99th percentile rainfall (above 40 mm d-1) is enhanced by 7~12% for a 0.6~0.8 ℃ 

warming (see Figure 3.5c), representing a super-CC increase (see Figure 3.9b). This suggests 

that, in addition to the thermodynamic effect, there is positive dynamic feedback on non-MJJAS 

heavy rainfall, which will be analyzed in the following section. In particular, the rates of 

increase in the 95th (99th) percentile rainfall are 9% (8.4%) and 12% (7%) for MJJAS and non-

MJJAS, respectively.  

To summarize, human-induced climatic warming has resulted in more frequent and heavier 

precipitation in both seasons over PRD, with non-MJJAS experiencing a greater increase in 

extreme rainfall (95th-98th percentile). Nonetheless, for very extreme rainfall (> 99th percentile), 

both frequency and intensity increase less robustly in non-MJJAS than in MJJAS, based on the 

multi-case simulations. The possible mechanism will be discussed in the following section. 

 
Figure 3.6 Daily precipitation (shading; units: mm d-1) and 850-hPa horizontal winds (arrows; 

see the scale at upper right in units of m s-1) averaged from the cases in (a, b, c) MJJAS and (d, 
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e, f) non-MJJAS seasons over PRD area for (a, d) CTL, and (b, e) NAT runs, as well as (c, f) 

the relative change (Diff) between the two runs. Grey dots indicate rainfall changes passing the 

90% significance level according to the Student’s t-test. See text for details. 

 
Figure 3.7 Same as Figure 3.6, but for extreme daily precipitation (above 95th percentile). 

 

Figure 3.8 Probability density function (PDF) of daily precipitation (units: mm d-1) in CTL 

(blue bar) and NAT (red bar) runs over PRD region for the events in (a) MJJAS and (b) non-

MJJAS seasons. The ratio between rainfall frequency given by CTL and NAT runs for rain rates 
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greater than 80 mm per day is also shown by black lines in the insert figures. 

 
Figure 3.9 Distributions of daily precipitation (units: mm d-1) over PRD from CTL (blue line) 

and NAT (red line) runs, as well as their relative changes (grey dashed line) for (a) MJJAS and 

(b) non-MJJAS seasons. 

3.3 Contributions from thermodynamic and dynamic processes  

The above results suggest that human-forced variations in extreme precipitation in non-MJJAS 

do not meet the moisture-driven CC relationship. Thus, we inspected changes in dynamic and 

thermodynamic components that contribute to extreme precipitation variability. Human 

influence on 850-hPa wind circulation is depicted in Figure 3.10, based on an average of cases 

from different seasons. For cases in MJJAS, a low-level anticyclonic anomaly is found to be 

centered over the eastern Guangdong province (see Figure 3.10a). Its southerly wind branch 

supports wetter-than-normal conditions over PRD and thus intensifies rainfall; In non-MJJAS, 

the stronger northeasterly winds south of 30°N along the east coast are favorable for cold and 

dry air moving southward, whereas easterly and southeasterly winds over SCS transport moist 

and warm air to the PRD region (see Figure 3.10b). The confluence of these two air streams 

strengthens the low-level moisture convergence. Besides, it can be inferred from the prominent 

northeasterly flow in non-MJJAS that the East Asian winter monsoon appears to be stronger 

under the anthropogenic warming climate.  
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Besides horizontal wind circulation, the vertical motion also changes as the climate warms. 

Following Emori and Brown (2005), the pressure velocity at 500 hPa was used to inspect 

changes in the vertical motion. Figure 3.11 gives the PDF of 500-hPa pressure velocity over 

PRD from CTL and the corresponding changes relative to NAT for both seasons. The vertical 

velocity associated with nonprecipitating days is excluded here. Positive (negative) values 

indicate a downward (upward) movement. Interestingly, the MJJAS rainfall is not always 

strictly related to the 500-hPa upward motion (see Figure 3.11a). The frequency of ascends and 

descends in CTL distributes nearly symmetrically. Their relative changes exhibit a “V” shape, 

with less frequent occurrence of the weaker vertical motion and more occurrence of the stronger 

vertical motion, in terms of both ascending and descending branches (see grey dashed line in 

Figure 3.11a). Unlike MJJAS, CTL simulations for non-MJJAS indicate preferred upward 

motion than downward motion (see Figure 3.11b). Under anthropogenic warming, it is evident 

that the ascent tends to be more frequent while descent becomes less frequent, with relative 

changes of less than ±5%. The stronger the ascent is, the more frequently the stream occurs. 

The redistribution of 500-hPa vertical velocity frequency in non-MJJAS implies strengthening 

of the mean vertical motion. This could account for the pronounced increase in the frequency 

and intensity of heavy rainfall in non-MJJAS (see Figure 3.8 and Figure 3.9). On the other 

hand, there is a wider range of vertical velocity change in MJJAS than in non-MJJAS, especially 

for stronger ascent and descent. This indicates that human activities exert a more remarkable 

influence on vertical motion in MJJAS. 

The total moisture flux transport and convergence over PRD in two seasons are now examined 

(Figure 3.12). The distribution of 1000-100hPa vertical-integrated moisture flux convergence 

(MFC) difference between CTL and NAT is similar to the distribution of precipitation 

difference, as can be seen in Figure 3.6c, f. The domain-averaged MFC rise to 4.7 mm d-1 in 

MJJAS and 3.6 mm d-1 in non-MJJAS. In both seasons, southwesterly winds transport moisture 
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to the inland areas of PRD, with the increased moisture flux transport in MJJAS is attributable 

to human-induced warming (see Figure 3.12a). Enhanced moisture transport in MJJAS 

contributes to the more intense rainfall over the northern PRD (see Figure 3.6c).  

Figure 3.13 gives the relative changes between CTL and NAT of precipitable water, defined 

as column-integrated water vapor, and 500-hPa pressure velocity with different percentile bins 

of daily precipitation. To estimate upward motion changes, only negative pressure velocity is 

computed. Regardless of the season, human-induced precipitable water and vertical velocity 

changes are positive for almost every percentile bin, indicating positive thermodynamic and 

dynamic contributions to precipitation intensification. Further inspection reveals that cases in 

MJJAS have a more consistent increase in both water vapor and vertical motion than cases in 

non-MJJAS. In particular, the associated precipitable water in MJJAS is enhanced as large as 

6~7%, which adheres to the CC relation, and the 500-hPa pressure velocity increases by 4~8% 

(see Figure 3.13a). In the non-MJJAS season, both of them peak at about 12% at the 97th 

percentile of rainfall (see Figure 3.13b). Variations in precipitable water are similar to changes 

in rainfall intensity (see Figure 3.9b), ranging from 4% to 12%. It is noteworthy that the less 

increment in the very extreme rainfall (> 99th percentile) in non-MJJAS than in MJJAS 

mentioned above is limited by water vapor changes, albeit with the greater enhancement of 

vertical motion is seen in non-MJJAS. This suggests that the thermodynamic effect of increased 

water vapor has a dominant contribution to extreme rainfall variations, which is consistent with 

previous studies (Chou et al., 2012; Emori & Brown, 2005).  

Dynamic effects of stronger wind circulation contribute more to very extreme rainfall (>97th 

percentile) compared to the thermodynamic effect in non-MJJAS season, while the opposite is 

true for MJJAS. Furthermore, a greater enhancement in precipitable water amount and ascend 

is found in non-MJJAS days, which is responsible for more intense and frequent rainfall for the 

95th~98th percentile (see Figure 3.8b and Figure 3.9b). Apart from seasonal differences, 
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vertical motion variations differ significantly from precipitable water, with percentile bins 

increasing in both seasons.  

Finally, we quantify the human-forced change in total moisture flux convergence, as well as 

thermodynamic and dynamic components based on the moisture budget balance, as shown in 

Figure 3.14. Variations in column-integrated moisture flux convergence, notably for non-

MJJAS season, agree well with rainfall changes in terms of daily-mean and 95th percentile daily 

precipitation (see the first two bars in each panel of Figure 3.14). For daily-mean rainfall 

changes, the thermodynamic effect is the predominant process in both seasons, consistent with 

previous findings (Seager et al., 2010; Ma et al., 2017); the dynamic effect amplifies rainfall 

increase and becomes a secondary contributor, especially to non-MJJAS rainfall. While for the 

95th percentile extreme precipitation, the dynamic effect tends to be the most important factor 

for both seasons. A similar dynamic amplification was found for Asian monsoon extreme 

rainfall (Pfahl et al., 2017; Tandon et al., 2018). In other words, changes in daily-mean rainfall 

intensity are mainly associated with the thermodynamic component, i.e., increased moisture. 

Extreme precipitation variations, however, are predominantly controlled by the dynamic effect, 

for example, those due to changes in wind circulations. In addition, the thermodynamic term 

exhibits high consistency in case simulations, whereas the dynamic term varies a lot throughout 

simulations. Large biases in the dynamic component are also found among global climate 

models, due to their poor performances in reproducing wind circulation (Chou et al., 2012). 

Thus, the case-to-case area-averaged rainfall variations could be due to the variations in the 

dynamic component (O’Gorman & Schneider, 2009), especially in the MJJAS season.  
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Figure 3.10 Difference (CTL - NAT) in wind fields at 850 hPa (units: m s-1, see the scale at the 

upper right of each panel), averaged from the cases in (a) MJJAS and (b) non-MJJAS seasons. 

Only wind differences that exceed the 90% significance level are depicted with black arrows. 

 

 

Figure 3.11 PDF of 500-hPa pressure velocity (units: Pa s-1) in the CTL (black line) and the 

relative changes from NAT to CTL (grey dashed line) over PRD, for (a) MJJAS and (b) non-

MJJAS seasons.  
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Figure 3.12 Difference (CTL-NAT) in vertically-integrated moisture flux (arrows, units: kg m-

1 s-1; see the scale at the bottom right) and its convergence (shading, units: mm d-1; positive 

corresponds to moisture convergence) over PRD, averaged from the events in (a) MJJAS and 

(b) non-MJJAS seasons. Grey dots indicate the difference exceeding 90% confidence level. 

Numbers at the upper-right corner of each panel represent PRD land-averaged values.  

 

Figure 3.13 Relative change from NAT to CTL of precipitable water (blue line; units: kg m-2) 

and 500-hPa pressure velocity (red line; units: Pa s-1), based on data taken from heavy to 

extreme precipitation occurrence (> 85th percentile of daily rainfall) over PRD for (a) MJJAS 

and (b) non-MJJAS seasons. Only positive values of pressure velocity are included to represent 

upward motion change. 
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Figure 3.14 Differences (i.e., CTL – NAT; units: mm d-1) in daily precipitation (PR), vertically-

integrated moisture flux convergence (VIMFC), thermodynamic (TH), and dynamic (DY) 

contributions for MJJAS (blue bar) and non-MJJAS (red bar) seasons, based on the average of 

(a) daily-mean rainfall and (b) 95th percentile extreme rainfall over PRD land area. The error 

bars denote the bias among extreme rainfall cases.   

3.4 Brief summary 

This chapter elaborates the human-contributed variations in daily-mean and extreme rainfall 

over the PRD region, based on the WRF simulations of selected 40 extreme rainfall events. To 

address human influences, the model was forced by the initial and boundary conditions with 

human forcing (control run, denoted as CTL), and with those in which human forcing was 

removed (NAT run). Model’s capacity to replicate large-scale patterns of synoptic conditions 

and precipitation was evaluated based on observations. The WRF model reproduces reasonable 

low-level temperature and thus precipitable water over PRD land, though an underestimation 

of both is found over SCS when compared to observations. WRF also captured horizontal wind 

circulation over the target area reasonably well, especially in the upper layers, due to spectral 

nudging. With the help of the well-simulated wind fields and moisture amounts, the gauge-

observed rainband pattern along the South China coastal area is accurately captured. The WRF-

simulated rainfall intensity over the inland PRD closely matches in-situ observations, albeit 
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with coastal rainfall being underpredicted. The simulated frequency of PRD rainfall also 

compares favorably with observations. 

Attributing precipitation changes to human influences is conducted by comparing CTL with 

NAT simulations. Based on the average of all selected cases, human activities have caused the 

low-to-mid (1000-500 hPa) troposphere to warm by 0.9 ℃ over the PRD. The near-surface 

temperature in PRD increases by 0.9-1.1 ℃ in MJJAS, while it climbs by 0.6-0.8 ℃ in non-

MJJAS. Under such a human-induced warmer climate, spatial distribution illustrates that daily-

mean precipitation increases substantially by 10~70% over inland, while coastal rainfall is 

inhibited by about 20%. For the 95th percentile extreme rainfall, a similar pattern is found, but 

with more significant variations. We also found that anthropogenic warming provokes stronger 

low-level southerly winds over the PRD, which is probably responsible for the greater increase 

of inland precipitation. Besides the rainfall pattern, precipitation frequency decreases for light 

to moderate rainfall but increases for heavier rainfall in both seasons. For heavy rain rates at 

80~150 mm d-1, the increase of frequency reaches 10~30% in MJJAS, with a more noticeable 

enhancement of 20~40% in non-MJJAS. Nevertheless, very extreme rainfall (> 99th percentile) 

in MJJAS tends to occur more frequently and become heavier as a result of warming. Moreover, 

for heavy rainfall (> 85th percentile), the mean rate of increase of precipitation intensity in 

MJJAS is estimated to be 8-9.5%, which is nearly CC scaling. In contrast, it reaches a super-

CC rate of 12.4% at the 96th percentile of the non-MJJAS rainfall, which in turn leads to a 

stronger vertical temperature gradient due to more latent heat released.  

The super-CC increase in non-MJJAS heavy rain results not only from a more robust increase 

in precipitable water amount, but more importantly from stronger and more persistent upward 

motion (see also Nie et al., 2018). It is also associated with changes in large-scale wind 

circulation, that is, the enhanced northward winds over PRD in MJJAS whereas strengthened 

wind convergence over the coast of South China in non-MJJAS. Last but not least, moisture 
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budget analysis reveals that the increase in daily-mean precipitation is primarily contributed by 

thermodynamic changes in both seasons, with dynamic changes being of secondary importance 

for non-MJJAS rainfall. While dynamic components contribute most to the 95th percentile 

precipitation. The indispensable dynamic feedback on PRD extreme rainfall in non-MJJAS will 

be further explored in Chapter 4 by studying a wintertime rainstorm.   
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Chapter 4 Attributing a wintertime extreme rainfall event to 

anthropogenic influences  

In Chapter 3, attribution of extreme precipitation characteristics to anthropogenic influences 

was carried out based on WRF simulations of multiple extreme cases. The findings suggest 

that extreme rainfall response to human impacts varies seasonally. Notably, the increase in 

heavy to extreme precipitation (85th-99th percentiles) during the non-MJJAS season peaks at 

12.4%, implying a super-CC scaling. This super-CC increase highlights the importance of 

dynamic contributions to non-MJJAS rainfall increase, in addition to thermodynamic influence.  

To further explore such human-induced dynamic and thermodynamic effects on non-MJJAS 

extreme rainfall, we carried out an additional attribution analysis on a record-breaking rainfall 

event in boreal winter 2013.        

4.1 Meteorological overview 

In December 2013, a rare flooding disaster struck Hainan Province in South China, causing 

enormous damages to the local infrastructure. Heavy rainfall affected the Guangdong Province 

during December 14-17 and contributed to the largest 4-day cumulative rainfall with more than 

100 mm d-1 averaged over the entire PRD for winter (i.e., November-December-January) of 

1998-2018 (see the red dot in Figure 4.1). The monthly total precipitation averaged over Hong 

Kong SAR was the tenth highest for December since 1884 (source: 

https://www.hko.gov.hk/en/wxinfo/pastwx/ywx2013.htm). 

To examine the synoptic conditions of this heavy rainfall, we provided composite maps of wind 

circulation, wind divergence, and geopotential height at different pressure levels (see Figure 

4.2). In the upper troposphere (see Figure 4.2a), there was an intense westerly jet from North 
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Africa to Southeast Asia and the North Pacific. Disturbances within such a Rossby waveguide 

were found to be responsible for the initiation of this event (W. Huang et al., 2019; Chun Li & 

Sun, 2015). The strongest 250-hPa wind divergence is found over SC. In the middle 

troposphere (see Figure 4.2b), a deep low was located over the northwest of Russia, 

accompanied by the strongest northerly winds that brought plenty of cold air down to mid-

latitudes. A ridge lying over the northeastern Tibet Plateau and a trough over the western 

Indochinese Peninsula further facilitated the southward transportation of cold and dry air (see 

contours in Figure 4.2b). Warm moist air was transported northward by a southwesterly branch 

of the subtropical high over the western Pacific to feed rain-bearing systems (see vectors in 

Figure 4.2b). The two airflows converged in SC, accompanied by a noticeable ascend in the 

mid troposphere. We also noted that the mid-level upward motion was coupled with wind 

divergence in the upper layer (see shading in Figures 4.2a, b). In the lower troposphere (see 

Figure 4.2c), the subtropical high persisted over the western Pacific, transporting warm moist 

air mainly from SCS to SC (W. Huang et al., 2018). Meanwhile, cold dry air moved southward 

by northerly and northeasterly winds. Wind convergence occurs when the warm and cold 

airflows collided. The low-level convergence coupled with the upper-level divergence 

promoted strong atmospheric convection that triggered heavy precipitation (see shading in 

Figure 4.2c). During this event, the cold and dry air invaded the PRD region on December 15, 

causing a sudden drop in dewpoint temperature of around 10 ℃ by December 17 (see blue line 

in Figure 4.3). According to HKO records, the surface temperature reached the annual 

minimum temperature of 9.2 ℃ on December 18. 
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Figure 4.1 Cumulative distribution function (CDF) distribution of four-day cumulative rainfall 

(units: mm d-1) during wintertime over the PRD region from 1998 to 2018, based on TRMM 

3B42 observations. The red dot denotes the extreme rainfall event that occurred during 

December 14-17, 2013.  
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Figure 4.2 Composite patterns: (a) 250-hPa wind divergence (shading, units: 10-5 s-1) and 

zonal wind (contours, units: m s-1), (b) 500-hPa pressure velocity (shading, units: Pa s-1), 

geopotential height (black contours, units: m), temperature (green contours, units: K) and 

horizontal winds (vectors; see the scale at top right in units of m s-1), (c) 850-hPa wind 

divergence (shading), geopotential height (black contours), temperature (green contours) and 

horizontal winds (vectors; see the scale at top right in units of m s-1) averaged for December 

14-17, based on ERA-Interim data.  
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Figure 4.3 Time evolution of 6-hourly air temperature (black, units: ℃) and 2-m dewpoint 

temperature (blue, units: ℃) averaged over the PRD region from December 9 to 18, based on 

ERA-Interim data. 

4.2 Model evaluation 

4.2.1 Rainfall evaluation 

The WRF model’s performance in reproducing the synoptic variables, such as specific 

humidity, horizontal wind components, and pressure velocity, during this extreme rainfall 

process are assessed based on ERA-Interim data (see Figure 4.4). The model successfully 

captured the evolution of specific humidity, with maximum values of ~10 g kg-1 distributed 

below 800 hPa from December 14 to 15 (see Figure 4.4a, b). However, there is an 

underprediction of humidity prior to the onset of rainfall but an overestimation on December 

16. The simulated wind evolution, especially for the zonal wind, is in good agreement with 

observations (see Figure 4.4c, d, e, f). Compared with ERA-Interim, the model reproduced 

weaker mid-to-upper-level (above 600 hPa) southerly winds (positive), and low-level (below 

700 hPa) northerly winds (negative) over PRD during the precipitation period from December 

14 to 17. For pressure velocity, the observed main ascend (negative) centers on December 15 

and 16 were well simulated, although the model gave a slightly stronger low-level (below 800 

hPa) ascending motion during the rainfall period (see Figure 4.4g, h).  
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We also evaluated the model-simulated precipitation using satellite- and rain gauge-based 

observations. Figure 4.5 presents daily precipitation averaged from December 14 to 17 over 

SC, obtained from the WRF control runs (CTL) using different physics schemes, and TRMM 

3B42 product and gauge-based CPC observations. In general, the ensemble mean of the CTL 

simulations agrees better with TRMM 3B42 than CPC data. Furthermore, it is noted that the 

ensemble mean performs better than simulations with individual schemes by comparing to 

observations, in terms of both pattern and intensity of the rainband. In particular, the WG3 and 

WKF schemes overestimate the observed rainfall intensity, whereas TBMJ is comparable to 

CPC observations but less than TRMM-observed rainfall. However, the simulated rainband is 

shifted to the northwest by 110 km, compared with the observed rainband, although it still 

covers our study area. Despite the fact that the ensemble mean simulations and TRMM 3B42 

data appear to be stronger than the CPC-observed rain rates, the model has a good capability 

of capturing the precipitation patterns. Previous studies concluded that the CPC dataset tends 

to smooth out the precipitation structure and underestimates rainfall intensity over Mainland 

China (Shen & Xiong, 2016).  

Besides the spatial patterns, it is noteworthy that the WRF-simulated time evolution of daily 

precipitation in PRD matches closely both the observations (see Figure 4.6). The model gives 

maximum rainfall on December 15 and 16 more than 40 mm d-1, with a slight underestimation 

of mean rainfall when compared with CPC data (see numbers in brackets in Figure 4.6). 

Overall, WRF can well simulate the precipitation pattern and evolution, as well as the 

associated atmospheric fields of this event.  
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Figure 4.4 Comparison of time evolution of (a, b) 6-hourly specific humidity (units: g kg-1), (c, 

d) U-wind (units: m s-1), (e, f) V-wind component (units: m s-1), and (g, h) pressure velocity 

(units: Pa s-1) averaged over the PRD region from ERA-Interim (left column) and WRF control 

run (right column). The rainfall period is marked by the black dashed lines. 
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Figure 4.5 Daily mean precipitation (units: mm d-1) between December 14 and 17 over South 

China, obtained from the WRF control runs using (a) Thompson-BMJ, (b) Thompson-Grell 3D, 

(c) Thompson-KF, (d) WSM6-BMJ, (e) WSM6-Grell 3D, (f) WSM6-KF schemes and (g) the 

ensemble mean of the multi-physics members, as well as from (h) TRMM 3B42 product, and (i) 

gauge-based CPC observations. The purple box in each panel outlines the PRD region. 
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Figure 4.6 Time evolution of daily precipitation over the PRD, obtained from rain gauge-based 

CPC observations (light green), satellite-based TRMM 3B42 product (dark green), and WRF 

CTL simulations (black). Error bars indicate the standard deviation among the six ensemble 

members with different physics schemes. Numbers in brackets are the 4-day mean precipitation 

between December 14 and 17. 

 

4.2.2 Comparison of WRF-simulated human forcing with CMIP5 projections 

Furthermore, we have evaluated the WRF’s ability to replicate anthropogenic forcing over the 

outermost domain projected by CMIP5 GCMs. We see from CMIP5 projections (left panels in 

Figure 4.7) that human activities have caused temperatures in December to rise from ~1 K 

near the surface to around 2 K at upper levels (above 300 hPa); the low-latitudes tend to have 

a greater vertical temperature gradient of troposphere than the mid-latitudes (see Figure 4.7a). 

The specific humidity increased with warming, reaching the largest increase of approximately 

0.8 g kg-1 in the low-level tropics (see Figure 4.7c). These anomalies are consistent with the 

changes under CO2 warming from 33 CMIP5 model mean (see Fig. S8 in Laua & Kim, 2015). 

The wind fields in December show stronger upper-level (above 300 hPa) westerlies due to the 

increased temperature gradients, while weaker zonal winds are found below 300 hPa, 
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particularly at mid-latitudes of 20-30°N (see Figure 4.7e); meridional winds are strengthened 

as a result of anthropogenic influences (see Figure 4.7g). These human-forced temperature and 

humidity anomalies were removed from variables in IBCs in the WRF DTQ experiments, and 

anomalous wind circulations were removed in DTQW. Differences between the control and 

two perturbed runs represent the WRF-simulated human forcing. By comparing with CMIP5 

ensemble, the WRF model reproduced temperature and humidity anomalies reasonably well 

(see Figures 4.7b, d); the vertical profiles of horizontal wind anomalies were also replicated 

in general (see Figures 4.7f, h), albeit with stronger westerlies and meridional winds in mid-

latitudes (30°N-34°N).  
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Figure 4.7 Latitude-height cross section of human-forced anomalies for (a, b) air temperature 

(units: K), (c, d) specific humidity (units: g kg-1), (e, f) zonal wind (units: m s-1), and (g, h) 

meridional wind (units: m s-1) averaged between 97-127°E (outermost domain of WRF). The 

left panels are derived from the mean difference in December of 1986-2005 between historical 

and historicalNat runs from CMIP5 seven-model ensemble (see also Chapters 2.4.2 and 2.4.3 

for more details). The right panels are the difference between WRF control and perturbed runs 

averaged over this case period. See text for details. 
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4.3 Rainfall responses to anthropogenic forcing 

The sensitivity of precipitation to anthropogenic forcing depicted in Figure 4.7 is now 

examined by comparing rainfall from the control with that from counterfactual experiments. 

We first focus on the spatial distribution of the 4-day mean precipitation during the period of 

December 14 to 17, from CTL and two perturbed simulations (see Figure 4.8), based on their 

6-member ensemble mean. CTL shows that rainfall mainly occurred over the northwestern 

areas (known as Qingyuan and Zhaoqing city), accompanied by strong low-level southeasterly 

winds that facilitate moisture transport from SCS to inland PRD (see Figure 4.8a). The 

maximum rainfall in CTL can reach 45 mm d-1, which was reduced by 7-10% in DTQ and 13-

15% in DTQW (see Figures 4.8d, e), associated with at least 1 K near-surface temperature 

difference (see Figure 4.7b). The results indicate the consistency with CC relation, i.e., around 

7% moisture increase per degree of warming (Allen & Ingram, 2002; Viatcheslav V. Kharin et 

al., 2007; Trenberth et al., 2003). Precipitation over the coastal PRD was also suppressed in 

two perturbed runs, showing a minor reduction of less than 5% in DTQ and a 7-14% decrease 

in DTQW; the larger reduction in DTQW mainly occurred over the cities of Zhongshan and 

Zhuhai. On the contrary, precipitation in between rainfall centers and coastal areas was 

somehow intensified by no more than 3% in DTQ and DTQW runs. However, the precipitation 

intensification in DTQW does not pass the 90% significance level. Overall, the daily mean 

precipitation in PRD tends to be more intense under such a human-induced warming 

environment. Furthermore, CTL-DTQW shows a larger increase in rainfall intensity than CTL-

DTQ, accompanied by the anomalous southerly winds that can deliver more abundant moisture 

to the rainfall locations (see vectors in Figure 4.8e).  

Here we also assess the time series of PRD daily rainfall from the control and counterfactual 

runs (see Figure 4.9). Compared to the CTL run, daily rain rates decrease in two perturbed 

runs on each day of the rainfall period. These reductions are apparently larger than the typical 
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reductions within ensemble members. It is clear that the daily rainfall was intensified as a result 

of human-induced warmer and wetter climate; the rainfall could become even stronger due to 

human-induced wind circulation changes in addition to thermodynamic changes.   

To quantify such precipitation variations that are attributable to anthropogenic influences, we 

calculated the rate of change in daily rainfall with near-surface temperature for each model grid 

over PRD. The frequency or probability distribution of these grided rates during the rainfall 

period is given in Figure 4.10. Here the change for, say DTQ (red line in Figure 4.10), was 

computed from the relative change in rainfall, i.e., (CTL-DTQ)/DTQ, dividing by the 2-m 

temperature difference of CTL-DTQ. The same computation was done for the DTQW run. 

Unanimously in the perturbed runs, the frequencies of rain rates peak at 10% K-1, which 

exceeds the CC scaling of 7% K-1. We also found that the probability exhibits a bimodal 

distribution in DTQW, with a secondary peak at around 36% K-1.  

We further quantified the 4-day mean and extreme precipitation changes by computing the 

ratio of rainfall in CTL relative to DTQ and DTQW separately, as shown in the box and whisker 

diagram (see Figure 4.11). Based on the mean, the change in four-day average rainfall intensity 

in CTL was a 1.11 (11%) increase compared to DTQ with an interquartile range from 8% to 

14%, and a 17% increase relative to DTQW with a range of 15-20%. For changes in extreme 

rainfall, i.e., 95th and 99th percentiles, it shows a 13% increase relative to DTQ with a spread 

of 10-17%, and 19% and 21% increases for 95th and 99th percentiles compared to DTQW, with 

wider interquartile ranges of 10-18% and 10-32%, respectively. In other words, human-forced 

thermodynamic changes contributed to at least 11% rainfall increases, whereas human-forced 

thermodynamic and dynamic changes can result in a larger increment of both mean and 

extreme precipitation during this event. On average, extreme rainfall increase is more robust 

than the daily mean, regardless of anthropogenic forcing, which is consistent with previous 

studies (Alexander et al., 2006; Myhre et al., 2019). Besides, the ratio of CTL to DTQW shows 
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a large increase in the 99th percentile than the 95th percentile rainfall, suggesting that human-

caused dynamic anomalies could intensify very extreme rainfall even further. It was also 

noteworthy that variations in these extremes can reach or even exceed the CC scaling; a similar 

super-CC behavior was reported for hourly rainfall changes (Lenderink et al., 2011; Westra et 

al., 2014). Such additional intensification in both the daily mean and extreme precipitation 

suggests the important role played by the dynamic effect (Nie et al., 2018).  

 
Figure 4.8 Daily precipitation (shading, units: mm d-1) overlapped with the 850-hPa horizontal 

winds (vectors, units: m s-1), averaged from December 14 to 17 over the PRD, from the (a) 

CTL, (b) DTQ, and (c) DTQW runs, as well as differences between (d) CTL and DTQ, (e) CTL 

and DTQW, relative to DTQ and DTQW, respectively. The significant relative changes in rain 

intensity at the 90% confidence level are marked by grey dots.  
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Figure 4.9 Time evolution of daily precipitation in the WRF CTL (black bars), DTQ (green 

bars), and DTQW (orange bars) averaged over PRD. Error bars denote the standard deviation 

among six ensemble members with different physics schemes. 

 

 
Figure 4.10 Frequency distribution of percentage changes in the daily precipitation per degree 

of 2-m temperature increases on each model grid over the PRD for December 14-17, from CTL 

relative to DTQ (red) and DTQW (blue). The green dashed line indicates the CC scaling of 7% 

K-1. 
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Figure 4.11 Box and whisker plot of ratios of the simulated 4-day mean (brown bars), 95th 

(blue bars) and 99th percentile (red bars) of daily precipitation (units: mm d-1) averaged over 

December 14-17 in PRD, in the CTL run relative to the DTQ and DTQW runs. 

4.4 Underlying mechanisms 

4.4.1 Large-scale circulation changes  

As previously stated, changes in extreme precipitation caused by human forcing are not only 

determined by moisture-related thermodynamic effects, but also by dynamic effects associated 

with wind circulation change. We first examine human influences on the large-scale 

distribution of temperature and geopotential height, as well as horizontal wind patterns at 

different pressure levels. In the low-level (850 hPa) troposphere (Figure 4.12), CTL-DTQ 

warming overall tends to be stronger across mainland China than SCS and adjacent continents 

(see Figure 4.12b). The thermal contrast is accompanied by southerly and southwesterly wind 

anomalies over coastal areas of SC (see vectors in Figure 4.12f). Meanwhile, the warmer air 

over central than northern areas of SC induced anomalous northerly winds, implying a 

strengthened winter monsoon circulation under human-induced warming in this event. These 



 75 

two airflows converged into an anomalous low-pressure system over southern China (see 

shading in Figure 4.12f), resulting in a strengthened low-level wind convergence (see vectors 

in Figure 4.12f). Besides, CTL-DTQW shows the highest warming over PRD inland, which is 

likely related to urbanization effects, and supports anomalous southerlies (see Figure 4.12c). 

In the mid-level (500 hPa) troposphere, accompanied by anomalous southerly winds (see 

vectors in Figure 4.13f), temperature anomaly in CTL-DTQW shows faster warming over land 

than over ocean, with the largest increment over central SC (see Figure 4.13c). Such 

anomalous temperature gradients, however, were not seen in CTL-DTQ that has a relatively 

uniform warming pattern, especially over the PRD (see Figure 4.13b). The low-level 

anthropogenic warming also results in higher geopotential at 500 hPa in CTL, with a larger 

increase over SC when compared to DTQW than DTQ (see shading in Figures 4.13e, f); this 

gives rise to anomalous anticyclonic winds over ESC in CTL-DTQW. Unlike the low-level 

warming, the upper-level (250 hPa) temperature in CTL increases more robust over the low-

latitudes (south of 19°N) than subtropics, compared to DTQ (see Figure 4.14b), which can 

also be seen in Figures 4.7a, b and Fig. S8 in Laua & Kim (2015). In contrast, CTL-DTQW 

has no distinct warming gradient (see Figure 4.14c); it also shows the anomalous high pressure 

over SC with stronger southerlies (see Figure 4.14f), consistent with temperature changes 

below 250 hPa.  

Changes in wind divergences at 250 hPa and 850 hPa are also examined and presented in 

Figure 4.15. CTL patterns indicate that the low-level wind convergence center covers the PRD 

region and upper-level divergence appears over the SC, suggesting strong vertical convection 

(Figures 4.15a, d). Such low-level wind convergences over the PRD were greatly intensified 

compared to DTQW due to human influences (see Figure 4.15f). On the other hand, human 

activities have little impact on the upper-level convergence over PRD but intensified the 

convergence north of PRD (Figure 4.15c), which is related to wind changes (Figure 4.14f). In 
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contrast, CTL-DTQ shows a much smaller difference (see Figures 4.14b, e), for no horizontal 

wind anomalies involved in DTQ.  

 
Figure 4.12 Composite map of (a, b, c) the 850-hPa temperature (shading, units: K) and (d,  e, 

f) geopotential height (shading, units: m) overlapped with horizontal winds at 850 hPa (vectors; 

see scale arrow at top right in units of m s-1), averaged from Dec 14 to 17 over the outermost 

domain, in the (a, d) CTL runs, as well as their differences between (b, e) CTL and DTQ, (c, f) 

CTL and DTQW that passed the 90% confidence level. Missing values over Tibetan Plateau 

are masked by grey shading. The dark box in figure (a) outlines the PRD region.  
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Figure 4.13 Same as Figure 4.12, but for variables at 500 hPa. Blue thick line denotes 5880-

m geopotential height contour.  

 

 
Figure 4.14 Same as Figure 4.12, but for variables at 250 hPa. 
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Figure 4.15 Composites of divergences (shading, units: 10-5 s-1) at (a, b, c) 250 hPa and (d, e, 

f) 850 hPa averaged over Dec 14-17 in the (a, d) CTL runs, and differences between (b, e) CTL 

and DTQ, (c, f) CTL and DTQW. Grey dots mark divergence differences at the 90% confidence 

level. Dark boxes outline the PRD region. 

4.4.2 Thermodynamic versus dynamic contributions 

We next inspect the PRD regional-scale responses of thermodynamic and dynamic processes 

to human forcing. To probe the anomalous thermodynamic processes involved, we examine 

the evolution of temperature and specific humidity changes as given in Figure 4.16. The 

difference between CTL and DTQ indicates that human activities have raised temperature 

throughout the troposphere, with a 1-1.2 K increase in the low levels (below 500 hPa) and 1.5-

2 K in the upper troposphere (see Figure 4.16a). A robust increase in specific humidity is also 

seen below 700 hPa, peaking at 0.7-1 g kg-1 during the rainfall period (see Figure 4.16c). The 

difference between CTL and DTQW is even more pronounced for both variables. During the 

peak rainy days, near-surface temperature increases by more than 2 K, and low-level (below 

700 hPa) specific humidity rises by about 1.6 g kg-1 (see Figures 4.16b, d). This suggests that 
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additional wind circulation changes could further intensify anthropogenic warming, and thus 

filling a wetter environment in this case.  

Human impacts on frontal intensity are then investigated by comparing the meridional gradient 

of 850-hPa equivalent potential temperature in CTL with perturbed runs (see Figure 4.17). A 

larger negative value represents a higher temperature gradient, indicative of more intense cold 

and dry air intrusion into the PRD region and thus enhanced frontal intensity. From CTL, a 

strong cold front approached the PRD on December 14, with eastward progression and became 

strongest on December 15 and 16, corresponding to the peak rainfall day. Compared to CTL, 

the cold front became weaker in the perturbed runs, with a larger reduction in DTQW than in 

DTQ, during the whole event period (see black dashed lines in Figure 4.17). This suggests that 

the human-influenced wind circulation anomaly can affect temperature changes in turn, such 

that altering precipitation characteristics.       

To infer the dynamic processes under human-induced climatic change, we have inspected the 

variations in temporal-spatial evolution of 850-hPa horizontal wind components, as illustrated 

in Figure 4.18. Negative values in Figures 4.18a, b, c indicate a strong easterly wind, and 

positive values in Figures 4.18d, e, f denote a southerly wind. As presented in the CTL run 

(see Figures 4.18a, d), low-level southeasterlies dominated PRD from December 13 to 16, 

before shifting to northwesterly winds once the cold front arrived on December 17; meanwhile 

southerlies increased with time. The 850-hPa low-level jets with wind speed excessing 10 m s-

1 were found on December 15, with southerlies over eastern PRD and easterlies over western 

PRD corresponding to precipitation centers (see also Figure 4.8a). Compared with CTL, the 

low-level wind pattern in DTQ does not change considerably, except for slightly weaker jets 

(see Figures 4.18b, e). However in DTQW, the easterly jets appear to be more vigorous but 

with weaker southerlies (see Figures 4.18c, f). In other words, human activities induced an 

anomalous southwesterly over PRD during peak rainfall days in the CTL experiment.  
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In addition to the horizontal winds, vertical motion responses to human influences are also 

assessed. Figure 4.19 presents the frequency distribution of the difference in 500-hPa pressure 

velocity in PRD between CTL and two perturbed runs, taken as strength of atmospheric vertical 

motion (Emori & Brown, 2005). Relative to DTQ, the stronger ascending motion, i.e., smaller 

than -0.6 Pa s-1, tends to occur more frequently in CTL, while both weaker ascents and descents 

(< ±0.6 Pa s-1) become less frequent (blue line in Figure 4.19). It suggests that human-induced 

thermodynamic effects on rainfall increase can be attributed to the more frequent occurrence 

of those stronger ascents. Note that frequency changes in CTL-DTQW are more upward motion 

(negative) but less downward motion (positive) in general (see red line in Figure 4.19). In fact, 

the frequency of upward motion changes displays a bimodal distribution with a primary peak 

at relatively weaker ascents of -0.45 Pa s-1 and a minor peak at stronger ascents of -1.2 Pa s-1, 

which probably explains the rainfall frequency changes in CTL-DTQW (see blue line in Figure 

4.10).  

Finally, we conducted moisture budget analyses to examine human-forced thermodynamic and 

dynamic contributions to precipitation variations. Figure 4.20 presents the changes in daily 

precipitation and 1000-100 hPa vertically integrated moisture fluxes and convergences 

(VIMFC), as well as thermodynamic and dynamic terms for CTL minus perturbed runs, in 

terms of their spatial distribution (upper panels) and regional mean (bottom panels) during this 

event. As expected, the pattern of total moisture flux convergence changes greatly resembles 

the precipitation anomaly pattern, for both perturbed runs (see Figures 4.20a, b, e, f). It means 

that the moisture flux convergence change can well explain human-induced rainfall anomalies, 

such as an intensified southwest-northeast rainband and lower rainfall along the rainband’s 

edges. Enhanced northward moisture transport in CTL-DTQW also supports a further increase 

in precipitation, due to the stronger southerly winds (see vectors in Figure 4.20f). The moisture 

flux convergence is then decomposed into two terms: a thermodynamic term, i.e.,−∫∇ ∙
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S𝑉D⃗ %DE𝛿𝑞T 𝑑𝑃 , dictated by specific humidity anomaly, and a dynamic term, i.e., −∫∇ ∙

S𝑞%DE𝛿𝑉D⃗ T 𝑑𝑃, determined by horizontal wind anomalies. For the thermodynamic term, overall 

its pattern is similar to the VIMFC anomaly pattern in CTL-DTQ, albeit with slightly less 

intensity, while in CTL-DTQW it contributes little or even negatively to VIMFC changes over 

the southeastern coast (see Figures 4.20 c, g). A quick check for negative thermodynamic 

contribution indicates that the anomalous moisture increase over the eastern SC (east of 114°E) 

was concentrated within lower levels (below 750 hPa), where easterly winds dominate in CTL 

and transported plentiful moisture to the west (rainband area) and dry the east, resulting in a 

negative contribution; on the contrary, human-caused moisture increase in the west extended 

from the surface up to higher altitudes (~600 hPa) accompanied with southwesterly in CTL, 

resulting in positive outcomes (not shown). For the dynamic term, CTL-DTQ shows its largest 

contribution to the VIMFC increase that occurred over the northwestern corner of PRD and 

Zhanjiang city (see Figure 4.20d). In contrast, CTL-DTQW dynamic term is highly consistent 

with the anomalous VIMFC and has a comparable magnitude to precipitation variations (see 

Figure 4.20h).          

The bottom panels in Figure 4.20 compare PRD-averaged moisture flux convergence changes 

and thermodynamic, dynamic terms for simulations from the six-member ensemble mean (bars) 

and individual members (error bars). The domain-mean in CTL-DTQ shows that both dynamic 

and thermodynamic terms contributed equally to the overall enhancement in moisture flux 

convergence under human-induced warmer and wetter climates (Figure 4.20i). Moreover, 

while individual members of simulations show a good agreement in the thermodynamic term, 

the dynamic term exhibits a relatively large variability across the members, as has been found 

by previous studies (Endo & Kitoh, 2014; Lee et al., 2017). This implies that the model 

uncertainty in simulating moisture flux convergence is more likely to be affected by the 

variability of the dynamic term. The CTL-DTQW domain-mean results confirm that the rainfall 



 82 

increase is mostly driven by the increase in the dynamic term, with a minor contribution from 

the thermodynamic term (see Figure 4.20j), which is consistent with previous studies (Ali & 

Mishra, 2018). The nonlinear term (NL) and biases (Res) between changes in precipitation and 

moisture flux convergence are much smaller than other terms and can be neglected (Lee et al., 

2017; Seager et al., 2010). More importantly, differences between two perturbed runs suggest 

that the human-caused dynamic effects are critical to the additional increase in this extreme 

precipitation.   

 
Figure 4.16 Time evolution of differences in (a, b) air temperature (units: K) and (c, d) specific 

humidity (units: g kg-1) averaged over PRD between (a, c) CTL and DTQ runs, (b, d) CTL and 

DTQW runs. Black dashed lines indicate the peak rainfall days on December 15 and 16. 
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Figure 4.17 Time-longitude cross-section of meridional gradient of the 850-hPa equivalent 

potential temperature (units: K 100 km-1) averaged between 21.5°N-24.2°N in the (a) CTL, (b) 

DTQ and (c) DTQW runs, respectively. The black dashed lines outline meridional boundaries 

of the PRD region. See text for more details. 

   

 
Figure 4.18 Same as Figure 4.17, but for the 850-hPa (a-c) zonal and (d-f) meridional winds 

(units: m s-1).  
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Figure 4.19 Difference in the frequency of 500-hPa pressure velocity (units: Pa s-1) over PRD 

for December 14-17, between CTL and DTQ (blue line), CTL and DTQW (red line).  
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Figure 4.20 Differences between (a-d) CTL and DTQ, (e-h) CTL and DTQW in (a, e) 4-day 

mean precipitation (PR), (b, f) 1000-100 hPa vertical-integrated moisture fluxes (vectors; see 

the scale at top right in units of kg m-1s-1) and convergences (VIMFC; shading), as well as the 

separated (c, g) thermodynamic (TH) and (d, h) dynamic (DY) terms, averaged over the event 

period. Also shown are the regional-averaged changes in PR, VIMFC, DY, TH, and a nonlinear 

term (NL, i.e., VIMFC-TH-DY) and residuals (Res, i.e., PR-VIMFC) that passed the 90% 

confidence level, for (i) CTL-DTQ and (j) CTL-DTQW. All these terms are in units of mm per 

day for comparison. Purple boxes in upper panels outline the PRD region.  

4.5 Brief summary 

We examined the sensitivity of an extraordinary precipitation event in winter 2013 over PRD 

to human influence using the WRF model, and explored underlying mechanisms for the 
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simulated rainfall anomaly. Based on a multi-physics ensemble, the WRF well reproduced the 

observed rainfall, in terms of its rainband location and evolution. The quantitative attribution 

analysis was conducted by re-simulating this event in WRF, forced at the initial and boundary 

climate with human-induced temperature and humidity anomalies removed (DTQ), and the 

additional wind circulation anomalies removed on top of DTQ (DTQW). Simply, CTL-DTQ 

represents the thermodynamic effects and CTL-DTQW indicates the combined effects of 

thermodynamic and dynamic changes induced by human forcing.  

Spatial patterns of four-day mean precipitation illustrate that human activities have caused the 

intensity of rainfall center over the northwestern PRD to increase by 7-10% and 13-15% under 

a 1.2 K warming in CTL-DTQ and a 2 K warming in CTL-DTQW, respectively. We then 

quantified such human impacts by computing the rate of daily rainfall change with near-surface 

warming at each grid over PRD. The frequency of rainfall changes peaks at 10% K-1 in CTL-

DTQ, whereas it shows a bimodal distribution peaking at 10% K-1 and 36% K-1 in CTL-DTQW. 

On top of that, we examined the sensitivity of the average and extreme precipitation to human 

influences, and found that CTL-DTQ rainfall was enhanced by 11% and 13% for the mean and 

both extremes, respectively; CTL-DTQW shows larger increases of 17% and 19% (21%) in 

the mean and 95th (99th) percentile rainfall. Based on these findings, we conclude that 1) 

human-induced dynamic changes can accelerate the thermodynamic-driven rainfall increase in 

this event, i.e., higher probability in CTL-DTQW than CTL-DTQ; 2) daily mean rainfall 

changes are roughly consistent with the CC scaling of ~7% K-1, whereas the extreme rainfall 

increase reaches nearly super-CC rate.  

The underlying mechanisms for the human-related rainfall changes are summarized as follows:  

(1) From the large-scale perspective, a noticeable low-level (850 hPa) temperature contrast 

between the China continent and SCS was found in CTL-DTQ, favoring anomalous southerly 

winds that bring sufficient moisture and warmer air from SCS towards the inland areas. Also, 
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the low-level wind convergence over SC and upper-level divergence over the north of PRD 

were strengthened with the help of human-forced thermodynamic and dynamic effects (CTL-

DTQW), which stimulates the intense convection activities and thus increases rainfall.  

(2) From the local-scale perspective, the cold frontal intensity tends to get stronger in PRD, as 

more warm moist air moved northward and conflicted with the southward dry cold air due to 

the stronger wind convergence mentioned above. It also facilitates the strong ascending 

motions to occur more frequently. As a result, the dynamic component turned to be a major 

contributor to the rainfall increase in CTL-DTQW, while the moisture-driven thermodynamic 

contribution was limited. On the other hand, the thermodynamic and dynamic changes 

contributed equally to anomalous rainfall in CTL-DTQ.    
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Chapter 5 Attribution a pre-monsoon heavy rainfall event to 

anthropogenic influences  

In Chapter 3, multi-case attribution analysis revealed a seasonally dependent response of PRD 

heavy precipitation to human influences, with CC scaling in MJJAS but super-CC scaling in 

non-MJJAS rainfall. This super-CC behavior was further investigated by studying a wintertime 

extreme rainfall event, and the underlying physical mechanisms for such additional 

intensification were examined in Chapter 4. This chapter focuses on the sensitivity of the so-

called pre-monsoon rainfall changes to human forcing and possible causes.   

Summer monsoon precipitation responses to human influences have been investigated in many 

previous studies (Ueda et al., 2006; Burke & Stott, 2017; Lee et al., 2018). However, human 

impacts on pre-monsoon heavy precipitation over PRD remain unclear, despite the importance 

of pre-monsoon rainfall; for instance, it contributes about half of the annual precipitation in the 

Guangdong Province (Luo et al., 2017). Interestingly, CMIP5 global models results indicate 

that the 95th percentile extreme rainfall in May over PRD appears to be reduced due to human 

activities (see Figure 5.1). Here we examine in details a pre-monsoon heavy rainfall case in 

May 2016, and carry out an attribution analysis using a convection-resolving model.  

5.1 Synoptic background 

The pre-monsoon heavy precipitation event in Guangdong took place on May 15, 2016. A rain 

belt was found spanning the cities of Guangzhou, Foshan, and Jiangmen, where the 

accumulative daily rainfall reached at least 50 mm and the maximum rainfall exceeded 80 mm, 

based on TRMM 3B42 (Figure 5.4a). Figure 5.2 depicts the synoptic background of this event, 

showing the spatial distribution of precipitable water, equivalent potential temperature and 

horizontal winds at the 850 hPa level. This case is characterized by a strong gradient of 
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equivalent potential temperature (𝜃7) accompanied by strong low-level northerly winds. The 

latter advected the cold and dry air southward to the “25-30°N” band over the continental area. 

Near the coast, low-level westerly and southwesterly transported warm and moist air northward; 

together with the southward cold airflows over the north of the coastline, an intense front 

system was found with large 𝜃7 gradient. In particular, maximum 𝜃7 (343K) was located along 

the coast, such as the PRD inland areas. We also found that precipitable water, i.e., total amount 

of water vapor integrated over the entire tropospheric column reached about 50-60 g kg-1 from 

the Guangdong to Zhejiang Province. These aforementioned meteorological conditions 

contribute to the heavy rainfall in PRD on that particular day.     

 
Figure 5.1 Difference in the 95th percentile of daily precipitation (units: mm d-1), averaged 

over May of 1986-2005, between historical and natural runs from CMIP5 GCMs ensemble 

mean. The red box outlines the PRD region.  
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Figure 5.2 Precipitable water (shading; units: kg m-2), equivalent potential temperature (green 

counters; units: K) and horizontal winds (vectors; units: m s-1) at 850 hPa averaged on May 

15, based on ERA5 reanalysis.     

5.2 Evaluation of the simulated event 

We have conducted three sets of experiments by downscaling this event under the historical 

(CTL run) and two different counterfactual initial and boundary conditions (IBCs) separately. 

Each set of simulations was run with 14 ensemble members comprising different microphysics 

schemes and starting times (see more details in Chapter 2.3.2). The ensemble mean of 

simulations outperformed individual runs (not shown), so the former was used in the following 

analysis. The meteorological variables, including horizontal winds, geopotential height, and 

temperature at various pressure levels, produced by the WRF CTL run from the ensemble of 

fourteen members were compared against reanalysis, and results are shown in Figure 5.3. It is 

evident that the simulated horizontal U- and V-wind components were in good agreement with 

reanalysis, except for a slight underprediction of zonal winds exceeding about 17 m s-1 (see 

Figures 5.3a-f). Unlike the horizontal winds, the WRF model overestimated the observed 

geopotential height by 30 m at 250 hPa and 20 m at 500 hPa, while an underestimation of ~80 
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m at 850 hPa was found (see Figures 5.3g, h, i). It was noteworthy that the simulated 850-hPa 

temperature compares well with reanalysis data (see Figures 5.3j, k, l). On the other hand, the 

model tends to generate a warmer mid-level troposphere and colder upper layers, with a ~0.4℃ 

positive bias for 500-hPa and a 0.1-0.5℃ negative bias for 250 hPa temperature. We also 

evaluated the specific humidity and pressure velocity over PRD in the control run (see Figure 

5.4). Overall, variations of specific humidity with time and altitudes were reasonably well 

captured by WRF, with the maximum moisture amount concentrated at the 850 hPa layer on 

May 14 and 15 (see Figure 5.4a, b). Strong ascending motion (negative pressure velocity), 

associated with the rainfall peak on May 15, was well simulated, albeit with weaker intensity 

(especially in the 400-600 hPa layer). The simulated downward motion from 600 to 800 hPa 

on May 15 and 16 was also underestimated compared with ERA5. Model daily precipitation 

during the peak of this event was also compared with TRMM 3B42 data. As can be seen from 

Figure 5.5, a rain belt extending from the Guangdong to Fujian Province was reproduced by 

the WRF CTL run, despite the model’s limitations in simulating its actual magnitude and 

location. For instance, the model rain belt was displaced southward thus located closer to the 

coast and was less intense; the latter underestimation is consistent with the weaker upward 

motion in the model. Overall, WRF is capable of replicating the main features of this event, 

although there are some biases in the upper-air variables and rainfall, in terms of their 

intensities.  
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Figure 5.3 Bias scattering plots of (a-c) horizontal U-wind and (d-f) V-wind components (units: 

m s-1), (g-i) geopotential height (units: km) and (j-l) air temperature (units: K) at 250 hPa (left 

column), 500 hPa (middle column), and 850 hPa (right column) over domain 2 (SC) on May 

2016, derived from the ensemble mean of WRF CTL simulations versus ERA5 reanalysis.  
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Figure 5.4 Time evolution of (a, b) specific humidity (units: g kg-1) and (c, d) pressure velocity 

(units: Pa s-1) over PRD for (a, c) ERA5 reanalysis and (b, d) WRF CTL ensemble. 

 

 
Figure 5.5 Daily precipitation (units: mm d-1) over domain 2 (SC) on May 15, obtained from 

(a) TRMM 3B42 observations and (b) WRF CTL ensemble. 
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5.3 Human-induced pre-monsoon rainfall changes 

To assess the impacts of human forcing, two counterfactual experiments as aforementioned 

were carried out: in DTQ run, the model was forced with IBCs that had human-forced 

temperature and specific humidity anomalies subtracted from the IBCs in CTL, and in DTQW 

run the same anomalous signals as in DTQ as well as human-induced horizontal wind 

anomalies were removed. We first examine the pre-monsoon daily precipitation responses to 

human influences. Figure 5.6 presents the spatial patterns of daily precipitation on May 15 in 

CTL and significant rainfall differences between CTL and those two perturbed runs. From 

Figure 5.6a, strong daily rainfall is found mainly over the coastal and neighbouring northern 

inland areas, with maximum rain rates reaching 45 mm. A noticeable spatially dependent 

response to anthropogenic forcing was seen for both perturbed runs. Surprisingly, due to 

human-related thermodynamic forcing, rainfall rates over the central and eastern PRD were 

significantly reduced in CTL relative to DTQ (see Figure 5.6b). In particular, the rainfall center 

within Huizhou city (23.06°N, 114.24°E) has experienced a maximum rainfall reduction of 

more than 18 mm (around 70% relative to DTQ). This result is different from previous findings 

that rainfall increases under human forcing at the rate of CC or super-CC scaling. On the other 

hand, rainfall over southwestern areas was found to be 5-14 mm (25%-40%) greater in CTL 

than DTQ. Possible mechanisms for the unexpected rainfall change will be explored in the 

following section. 

Compared to DTQW, CTL rainfall in southwestern and parts of northern areas has intensified, 

with the largest increase in Zhongshan city; however, rainfall over the eastern parts was slightly 

reduced due to anthropogenic forcing (see Figure 5.6c). By comparing the two perturbed runs, 

rainfall increases over the west are larger in CTL-DTQW than in CTL-DTQ; more importantly, 

rainfall decreases in CTL-DTQ were partially alleviated in CTL-DTQW by human-induced 

wind circulation changes. This result suggests that human-induced dynamic changes have a 
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positive impact on this pre-monsoon rainfall, whereas thermodynamic changes appear to have 

a more complicated impact.     

To qualify this pre-monsoon precipitation variation with anthropogenic warming, we computed 

the daily rainfall changes, defined as the difference of rainfall in CTL relative to DTQ and 

DTQW, per degree of warming in the 2-m temperature. Its frequency distribution for all grid 

points over PRD was shown in Figure 5.7. For this particular event, the most likely changes 

are found to be negative, with a decrease of ~20% and 16% per K warming for CTL relative to 

DTQ and DTQW, respectively. Compared with DTQ, DTQW rainfall frequency is displaced 

to more positive rainfall changes, consistent with the above rainfall pattern results (see Figure 

5.6c).  

 
Figure 5.6 Spatial distribution of daily precipitation (units: mm d-1) on May 15 over PRD, 

from (a) WRF CTL run, where rain rates greater than 10 mm d-1 were outlined by black 

contours. Also shown are the precipitation differences between (b) CTL and DTQ, (c) CTL and 

DTQW that passed the 90% significance level.  
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Figure 5.7 Frequency distribution of percentage changes in daily precipitation per K of 2-m 

warming on May 15 over PRD, in CTL compared to DTQ (blue line) and DTQW (red line). 

The rainfall change was calculated at each model grid that passed the 90% significance level.  

5.4 Physical mechanisms for rainfall changes 

We first investigate human influences due to thermodynamic effects. Figure 5.8 gives the 

difference in the low-level (1000-700 hPa) mean temperature, 850-hPa specific and relative 

humidity on May 15, between CTL and the perturbed runs. The temperature difference 

indicates a warmer lower troposphere by more than 0.8℃  due to human activities, with 

minimum warming in southwestern PRD (Zhongshan and Jiangmen cities) and strong warming 

of 1-1.3℃ in the rest of PRD (see Figures 5.8a, b). From DTQW run, the human-induced wind 

circulation anomaly resulted in further warming in the low levels (Figure 5.8b). The low-level 

specific humidity change, however, gives very different spatial patterns (see Figures 5.8c, d), 

with water vapor amount increasing more substantially in the west (> ~1.0 g kg-1) than in the 

central and eastern part of the domain (< 0.7 g kg-1). Due to the higher (smaller) moisture 

enhancement under a weaker (intense) low-level warming in the west (east) of PRD, the low-

level relative humidity was enhanced (reduced) accordingly by at most 4% (3%), as shown in 
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Figures 5.8e, f. Although the moisture increase with temperature did not strictly follow the CC 

relation in some areas, it still holds in the regional-averaged sense, since at the regional scale 

the PRD domain-mean relative humidity remains constant. Comparing these to the rainfall 

suppression in the east of 113.5°E (see Figures 5.6b, c), the latter seems likely to be related to 

the reduced relative humidity in that region. The relation between reduction in rainfall intensity 

and relative humidity is more striking near the coast where rainfall was concentrated (see 

Figure 5.6a). Therefore, human-induced thermodynamic and dynamic processes play equally 

important roles in modulating rainfall, a point which we will further elaborate on later.  

Changes of those thermodynamic anomalies at different pressure levels are also illustrated in 

Figure 5.9. Relative to both perturbed runs, CTL results show that eastern PRD (east of 

113.5°E) is warmer than the west, especially for the 800-500 hPa layer (see shading in Figures 

5.9a, b). However, specific humidity increased less in the east throughout the low-to-mid 

troposphere (below 500 hPa). In fact, the largest increase was found in the western part of the 

domain at 1000-850 hPa; with the smallest rise in temperature (see black contours in Figures 

5.9a,b), this leads to the increase of relative humidity (see green contours in Figures 5.9a,b). 

On the other hand, relative humidity above 850 hPa was reduced in eastern PRD, due to 

excessive warming and less increase in moisture amount. Thus rainfall reduction (increase) 

was related, more specifically, to the 1000-850 hPa relative humidity decrease (increase).  

The PRD area-averaged vertical profiles of these anomalous variables are shown in the bottom 

panels of Figure 5.9. Due to human activities, the regional-mean temperature below 700 hPa 

was raised by 0.9 ℃ (~1 ℃) in CTL-DTQ (CTL-DTQW); however, CTL-DTQ has a warmer 

700-500 hPa layer and became colder above 500 hPa, compared to CTL-DTQW (see Figure 

5.9c). Below 850 hPa, specific humidity was enhanced by ~0.7 g kg-1 in CTL-DTQ and ~0.9 g 

kg-1 in CTL-DTQW (see Figure 5.9d). While there are slight increases in relative humidity 

below 850 hPa due to its noticeable increase over western PRD, it was reduced by around 2.5% 
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in the low-to-mid levels in CTL relative to both perturbed runs (see Figure 5.9e). Further 

comparison between DTQ and DTQW indicates that CTL-DTQW appears to have a low-level 

(below 850 hPa) warmer and wetter troposphere than CTL-DTQ, which accounts for more 

rainfall in CTL-DTQW than in CTL-DTQ (Figures 5.6b, c). More notably, while increments 

in CAPE in two perturbed runs were very similar, CIN above 850 hPa in CTL-DTQ was much 

higher than in CTL-DTQW, as shown in Figure 5.10.  

We have also examined how the frontal system in this event responses to anthropogenic 

warming by computing the difference in meridional gradients of 850-hPa equivalent potential 

temperature 𝜃7 in CTL relative to two perturbed runs separately. Figure 5.11 shows that there 

are positive (negative) gradients, denoting a weaker (stronger) front intensity due to human 

activities. The zonal mean 𝜃7 gradients clearly illustrate that the front tends to be more intense 

in western PRD but weaker in the central and eastern parts. It is noteworthy that CTL-DTQW 

gives stronger negative gradients in the western part of the domain than CTL-DTQ, which 

shows that the front was further intensified due to dynamic effects, consistent with a larger 

rainfall increase in CTL-DTQW.  

The physical mechanism for those findings from thermodynamic aspects can be summarized 

as follows: human-induced strong tropospheric warming alone resulted in a decrease in low-

level relative humidity and consequently increased CIN values together with the weaker front 

intensity, leading to reductions of pre-monsoon extreme rainfall; on the other hand, human-

caused enhancements in both specific and relative humidity due to minor warming, and the 

strengthened front intensity jointly contributed to the rainfall increase.     

To further examine human influences due to dynamic effects, Figure 5.12 presents the 

anomalous pressure velocity and zonal wind changes along longitudes and altitudes. Over the 

eastern PRD (113.5°E-114.5°E), CTL-DTQ shows much weaker vertical motion (positive 

anomalous omega) throughout the troposphere than CTL-DTQW (see shading in Figures 
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5.12a, b). In particular, the weakest vertical motion occurred around the longitude of 114.4°E, 

collocated with rainfall reduction signals in CTL-DTQ. In the west of 113.5°E, CTL-DTQW 

obviously shows a stronger ascending motion (negative anomalous omega) that supports 

precipitation intensification, whereas CTL-DTQ shows no significant change. The domain-

averaged profiles of pressure velocity indicate that CTL-DTQ has weaker vertical motion 

above 900 hPa, with strongest perturbations of ~0.031 Pa s-1 at 500 hPa; the vertical motion in 

CTL-DTQW, on the contrary, shows no substantial change, except for the 500-hPa weaker 

ascents and relatively stronger ascents near the surface (see Figure 5.12c). Besides, anomalous 

easterly winds below 400 hPa and westerly winds above 400 hPa are found in CTL relative to 

both the perturbed runs, suggesting strengthened vertical zonal wind shears caused by human 

influences (see contours in Figures 5.12a, b). The stronger upper-level westerlies belong to 

the southern wind branch related to the anomalous 250-hPa cyclone over SC, as inferred from 

the CMIP5 ensemble (not shown). This anomalous cyclonic pattern is likely to inhibit the 

upward motion restrain large-scale convections, resulting in the overall rainfall reduction (see 

Figure 5.7).           

Human-related low-level wind circulation changes over SC are further addressed. Figure 5.13 

depicts the horizontal winds and temperature at 850 hPa in the control run, as well as their 

differences from the perturbed runs. CTL clearly shows the low-level wind convergence of 

strong northerly with southwesterly winds across the northwest of Guangdong (see vectors in 

Figure 5.13a). However, in comparison to DTQW, these northerlies in CTL became weaker, 

and anomalous southerly winds dominate the SC, with significantly warmer land temperatures 

than the ocean (see Figure 5.13c). In contrast, there was no substantial wind anomaly over 

Guangdong in CTL-DTQ (see Figure 5.13b). Human-forced anomalies in precipitable water 

and vertically integrated moisture fluxes are also illustrated in Figure 5.14. Compared to both 

perturbed runs, precipitable water in CTL was enhanced more substantially in the western parts 
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of Guangdong than in the east (see shading in Figures 5.14b, c), which is mostly contributed 

by the 850-hPa specific humidity increases (see Figures 5.8c, d). Furthermore, CTL-DTQW 

tends to have a greater increase in total moisture amount than CTL-DTQ, accompanied by the 

anomalous northward moisture transport; this indicates that more sufficient moisture was 

delivered from SCS to the inland, creating a favorable condition to offset the rainfall decrease 

in CTL-DTQ (see vectors in Figure 5.14c).  

 

Figure 5.8 Anomalous distributions of (a, b) 1000-700 hPa averaged temperature (units: K), 

(c, d) 850-hPa specific humidity (units: g kg-1) and (e, f) 850-hPa relative humidity (units: %) 

on May 15, between (a, c, e) CTL and DTQ, (b, d, f) CTL and DTQW. 
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Figure 5.9 Longitude-pressure cross section of anomalous air temperature (shading, units: K), 

specific humidity (black contours, units: g kg-1), and relative humidity (green contours, 

units: %) averaged over latitudes of 21.7-24.1°N on May 15, for (a) CTL minus DTQ, and (b) 

CTL minus DTQW; (c), (d), (e) show the vertical profile of PRD-averaged anomalous 

temperature, specific and relative humidity for CTL-DTQ (blue line) and CTL-DTQW (red 

line), respectively. 
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Figure 5.10 Vertical profiles of changes in (a) convective available potential energy (CAPE), 

and (b) convective inhibition (CIN) averaged over the PRD on May 15, for CTL minus DTQ 

(blue line) and CTL minus DTQW (red line). 

 

 
Figure 5.11 Differences in the meridional gradient of 850-hPa equivalent potential 

temperature (units: K 100 km-1) varies with longitudes, averaged over latitudes of 21.7°N-

24.1°N (boundary of PRD) on May 15, between CTL and DTQ (blue line), CTL and DTQW 

(red line). 
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Figure 5.12 Same as Figure 5.9, but for (a), (b) anomalous pressure velocity (shading, units: 

Pa s-1) and zonal winds (contours, units: m s-1), as well as the (c) vertical profile of anomalous 

pressure velocity. 

 
Figure 5.13 Temperature (shading, units: K) and horizontal winds (vectors; see scales at top 

right in units of m s-1) at 850 hPa on May 15 in (a) CTL, and their differences between (b) CTL 

and DTQ, and (c) CTL and DTQW. 

 
Figure 5.14 Same as Figure 5.13, but for precipitable water (shading, units: kg m-2) and 

vertically-integrated moisture fluxes (vectors; see scales at top right in units of kg m-1 s-1). 
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5.5 Brief summary 

Attributing a pre-monsoon heavy rainfall change to human influences was conducted using the 

WRF model in this chapter. A 14-member ensemble was used to reduce the internal model 

variability, and the ensemble of simulations agrees well with the observed precipitation and the 

associated synoptic conditions during this event. In contrast to previous findings that extreme 

rainfall increases consistently with human forcing, the ensemble results of this event indicates 

that human-induced thermodynamic forcing could have reduced the intensity of the maximum 

rainfall center over Huizhou city by at least 70%, despite the increased water vapor amount 

under anthropogenic warming (CTL-DTQ). On the other hand, rainfall over the western PRD 

is enhanced by 25%-40% due to human-related thermodynamic effects, with a further increase 

caused by dynamic effect (CTL-DTQW). The probability distribution of rainfall changes with 

warming shows that rainfall in this event is more likely to decrease by around 20% per kelvin 

near-surface warming. However, the rainfall reduction is partially alleviated by human-related 

dynamic effects (16% K-1).  

The main causes for the spatial-dependent rainfall responses to human forcing are summarized 

as follows:  

(1) Precipitation reduction in the eastern PRD jointly resulted from the weaker cold-frontal 

intensity and higher CIN associated with the decreased relative humidity, as well as the 

dominance of weaker ascending motions under a warmer climate. 

(2) On the other hand, rainfall increase over western PRD can be attributed to substantial 

enhancements in both specific and relative humidity at lower levels, as well as a strengthened 

front intensity. Besides, human-induced stronger southerly winds and enhanced northward 

moisture transport further intensify this pre-monsoon extreme rainfall, reflecting a positive 

dynamic effect. 
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Above all, human-caused thermodynamic and dynamic contributions are equally crucial in 

determining precipitation changes in this event.         
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Chapter 6  Discussion and conclusion 

In this chapter, we first discuss the limitations and potential impacts of extreme events selection 

and attribution approach on results, as well as uncertainties of model simulations. The main 

conclusions of this study are then recapitulated, followed by a brief summarize of innovation 

and significance of this thesis. Finally, we present a research outlook based on the current 

studies of extreme rainfall event attribution and the latest IPCC AR6 report.    

6.1 Discussion 

6.1.1  Definition and selection of extreme events 

As mentioned in Chapter 1.1.1, there are dozens of indices used to define extreme precipitation, 

in terms of intensity, frequency, and duration. In this study, we used 95th percentile thresholds 

as the definition of extreme rainfall. Meanwhile, we define these events over a long time period 

(1998-2018) such that the natural variability is properly incorporated. In this way, over 200 

extreme rainfall events were identified. These events, however, may not be detected by using 

other indices. In other words, how the metrics being used can influence how extreme rainfall 

case selection, the result of which might affect an inference on human impacts. More extreme 

rainfall is found to be more sensitive to anthropogenic warming (Min et al., 2011; Zhang et al., 

2017). Therefore, one should be more careful when comparing attribution results to those from 

previous studies, even for the same region.   

In the multi-case attribution (see Chapter 3), extreme precipitation events are selected based on 

the TRMM 3B42 product due to unavailable in-situ data with dense spatial and temporal 

coverage. However, TRMM 3B42 has biases in rainfall estimates, such as overestimating 

heavy rainfall over China (Zhao & Yatagai, 2014; Huang et al., 2018) or failing to capture the 
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spatial-temporal evolution of storm rainfall (Anjum et al., 2016). Some intense rainfall in 

reality might not appear or is simply displaced out of the target region in TRMM 3B42. 

Nonetheless, we evaluated the simulations of TRMM-based extremes against rain gauge-based 

observations before conducting attribution analysis to ensure accurate simulations.  

6.1.2  Model uncertainties 

One of the biggest challenges in this attribution study is the capability of WRF for reproducing 

some extreme events, particularly precipitation extremes associated with convection (Zhang et 

al., 2017). Though we used a 2km × 2km convection-resolving resolution in the simulations, 

the results are still sensitive to different parameterization schemes (Singh & O’Gorman, 2014). 

Precipitation characteristics are predominantly sensitive to cumulus parameterizations and less 

to PBL and microphysics schemes (Crétat et al., 2012). Furthermore, the model bias for heavy 

precipitation over Southern Great Plains can be significantly reduced by using optimal input 

parameters in the KF scheme (Yang et al., 2012). This optimization can be applied to our 

simulations for additional research to check whether it is transferable to the PRD region, but it 

is beyond the scope of this study. The rainfall simulations are not only sensitive to physical 

schemes but also the forcing data. Take the pre-monsoon heavy precipitation event as an 

example, its simulation using ERA5 as IBCs performs better than using ERA-Interim 

reanalysis due to the better representation of synoptic conditions in ERA5 data (Hoffmann et 

al., 2019). Apart from these factors, the WRF model bias could be owing to the simulations not 

fully considering aerosol effects (Yun et al., 2020), given the relatively high aerosol 

concentrations in Guangzhou city. Nonetheless, we ran a variety of sensitivity tests to reduce 

model biases, such as applying the spectral nudging technique to improve rainfall simulation 

despite being artificial to some extent (see details in Chapter 2).  
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Another source of uncertainty comes from the CMIP5 global model bias, especially in 

circulation simulations. In Chapter 4, we compared human-induced synoptic anomalies from a 

seven-model ensemble to results from Laua & Kim (2015). The comparison suggests that the 

difference is mainly from human-related horizontal wind anomalies, whereas greenhouse-gas 

warming is consistent. This is consistent with the fact that there exists a larger range of 

uncertainties across CMIP5 models in simulating the large-scale circulation (Pfahl et al., 2017), 

and a lack of reliable reanalysis products to constrain their dynamics in models (Tandon et al., 

2018). Differences in wind anomalies between the two studies are probably due to the use of 

different CMIP5 GCMs. In fact, there are lots of approaches for selecting the subset of CMIP5 

models from which anthropogenic signals are extracted (McSweeney et al., 2015). This study 

chose an ensemble of seven GCMs with varying parameters of each model, based on their 

ability to simulate surface temperature and its historical trend. The anthropogenic signal may 

differ from this if alternative selection methods are applied. This potential uncertainty in 

attribution assessments could be estimated through Bayesian methods as reported by Paciorek 

et al. (2018). Further experiments with different sets of CMIP5 or CMIP6 models are necessary 

for validation.  

6.1.3  Limitations on PGW method 

The shortcoming of PGW is that it imposes unrealistic constraints on interseasonal and internal 

variability. In this method, perturbations due to monthly anthropogenic forcing as inferred from 

GCMs were removed from 6-hourly forcing data in WRF, assuming that those forcing remain 

constant over a month. While this assumption is plausible for anthropogenic warming with 

relatively small changes measured at that scale, it may introduce errors for more variable wind 

anomalies caused by human influences. This bias can be inferred from the comparison of 
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anomalies from GCMs and WRF simulations (see Figure 4.7 in Chapter 4). More evaluations 

of the PGW approach can be carried out to further fine-tune this method. 

6.1.4  Moisture budget decomposition 

We have assessed the thermodynamic and dynamic contributions to human-forced extreme 

rainfall changes using the moisture budget equation. There are some caveats in this approach. 

First, the thermodynamic term involves human-caused specific humidity changes only with the 

fixed wind circulations. Seager et al. (2010) previously checked thermodynamic contributions 

to precipitation anomaly due to changes in specific and relative humidity independently, and 

concluded that increased specific humidity explains the whole thermodynamic contribution to 

rainfall change for all regions and seasons. This allows the assumption of constant relative 

humidity under warming. It was also noted that moisture amounts can be partly altered by 

circulation changes owing to global warming, which can be seen from the difference between 

DTQ and DTQW runs in specific event attribution (see Chapters 4 and 5). Thus, it is impossible 

to clearly isolate thermodynamic contribution from dynamic contribution. Despite such 

limitations, the moisture budget decomposition is useful for analyzing the cause of rainfall 

variations. Using this method, a larger contribution of the dynamic component was found for 

PRD extreme rainfall, which is consistent with the results of SC rainfall using the CESM model 

(Li et al., 2019). However, there are also studies showing negative dynamic contributions to 

the tropical rainfall extremes based on CMIP3 outputs (Chou et al., 2012). These previous 

results indicate the spatial spread of dynamic effects, which might be also related to the global 

model bias, limited sample size, and different methods for extracting human-induced warming 

signals. Thus, more examinations of dynamic effects on regional extreme rainfall are necessary.  

Second, the thermodynamic and dynamic contributions can be further separated into two parts: 

changes in moisture advection and moisture divergence or convergence. This decomposition 
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has been done, and enhanced moisture convergence from dynamic changes is found to be the 

primary cause of the occurrence of extreme rainfall in Indian (Roxy et al., 2017). Horizontal 

advection, on the other hand, is crucial for the decrease in very extreme rainfall in the subtropics 

(Chen et al., 2019). Explaining all of these processes will help disentangle the involved physical 

mechanisms. In this regard, more research into the role of these components in human-induced 

changes in the PRD extremes is warranted.  

Last but not least, the transient eddy term is neglected in the breakdown of the moisture budget 

in this study, due to its small contribution (Lee et al., 2017). Nonetheless, transient eddies 

changes can drive changes in wind circulation and moisture fluxes as a result of global warming, 

which remains to be studied further to acquire a deeper understanding of hydrological cycle 

changes (Seager et al., 2010, 2014).   

6.1.5  Other uncertainties involved 

Precipitation variations are not only controlled by anthropogenic factors but also by the climate 

variability. For example, the El Nin4o Southern Oscillation (ENSO) - the main control of rainfall 

inter-annual variability – accounts for the extreme rainfall in May 2016 over Yangtze River 

Valley in China (Li et al., 2018); while ENSO has little impacts on Rx5day extreme rainfall in 

Southeast Australia (King et al., 2013). The contribution of such climate variability to the PRD 

extremes remains unclear. Although this study focuses on anthropogenic impacts on extremes, 

we did not exclude extreme rainfall cases occurred during El Nin4o/La Nin4a years. This would 

have little effect on the results because we ran parallel experiments with the main difference 

being human forcing.   

The magnitude of extreme rainfall response to human activities differs from case to case and 

is dependent on several factors, such as weather systems and types of extremes, models utilized 

and threshold for extreme events. For instance, our results indicate that anthropogenic warming 
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has intensified the 2013 PRD winter rainstorm caused by cold air intrusion by 17%, with an 

interquartile range of 15%-20%, but reduced the pre-monsoon heavy rainfall in western PRD 

by about 70%; Wang et al. (2018) concluded that it contributed to the 2017 Hurricane Harvey’s 

extreme rainfall by about 20%, with a range of 13%-37%. This discrepancy in rainfall intensity 

changes is due to their different synoptic systems. Besides the intensity, anthropogenic forcing 

has led to a 10%-30% increase in the frequency of extreme rainfall in MJJAS using WRF 

simulations. This differs from (Burke et al., 2016) in which the probability of the PRD’s rainfall 

that greater than extreme rainfall in May 2015 was enhanced by 66% ± 19% based on GCMs. 

Multiple factors including differences in model ability to simulate rainfall, attribution methods, 

thresholds used to define extreme rainfall as well as time periods appear to have contributed to 

this discrepancy, however a detailed discussion is beyond the scope of this thesis. More 

research on quantitatively examine extreme precipitation responses to human forcing at various 

regions is in urgent need. Last but not least, the effect of sampling variability related to limited 

extreme events and model ensemble sizes on attribution estimates can be quantified using a 

statistical framework as presented by Paciorek et al. (2018).  

6.2 Conclusion 

This study has attributed multiple extreme precipitation events over PRD in different seasons 

to anthropogenic influences. The main findings are summarized in chapter order by responding  

to the objectives proposed at the beginning of this thesis.  

(1) In the multi-case study, the intensity and location of rainfall centers, as well as the 

associated synoptic conditions, are well replicated by the WRF model. The attribution results 

are outlined as follows:  

• Based on simulations of the selected 40 events, human activities have intensified daily 

precipitation by 10% up to 85% over inland and suppressed the coastal rainfall by 25% 
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at most, for a 0.9 K warming troposphere (1000-500hPa) over PRD for both MJJAS and 

non-MJJAS seasons. Notably, the magnitude of heavy rainfall (≥ 95th percentile or rain 

rates above ~80 mm per day) in MJJAS increases at a rate of 8-9.5% (roughly CC scaling), 

whereas the change in non-MJJAS peaks at 12.4% (nearly super-CC scaling); their 

frequencies have increased by 10%-30% in MJJAS and 20%-40% in non-MJJAS as a 

result of human influence.  

• The involved mechanisms are examined from the thermodynamic (TH) and dynamic 

(DY) perspectives. From TH’s view, anthropogenic warming leads to enhanced 

precipitable water and moisture transport from SCS towards the inland that feeds the 

PRD heavy rainfall in both seasons. While DY contribution to rainfall change differs 

with seasons. In MJJAS, human influences have led to stronger low-level southerly 

winds as well as more frequent strong vertical motion and less weak motion. In the non-

MJJAS season, there is a strengthened low-level wind convergence accompanied by 

more (less) frequent updrafts (downdrafts), which is likely the reason for the super-CC 

increase of heavy rainfall. Based on regional average, the intensification of daily-mean 

rainfall is substantially contributed by the TH term for both seasons and the DY term 

contributing as a secondary factor for non-MJJAS cases. On the contrary, the DY term 

dominates the 95th percentile rainfall increase. These findings all point to the non-MJJAS 

receiving more intense and frequent heavy rainfall modulation due to human activities 

than MJJAS, which is mostly attributed to the DY contribution.   

We then focused on human-forced DY and TH effects on two specific extreme rainfall events 

in different seasons over PRD. 

(2) One is a rare wintertime extreme rainfall event in 2013 caused by cold-air intrusion. 

Ensemble of simulation results closely matches the observed precipitation. The quantitative 

attribution analysis of this event shows that: 
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• Human-induced TH forcing alone contributed to an 11% increase in the mean rainfall of 

this event for 1.2 K near-surface warming on average, whereas the sum of DY and TH 

(hereafter ALL) forcing contributed to a 17% increase for 2 K warming. Both TH and 

ALL forcing have led to a roughly CC scaling for the increase in mean rainfall intensity 

and a super-CC increase for the 95th and 99th percentiles (13%-21%), with ALL forcing 

producing relatively higher increments. The rainfall probability is most likely to be 

enhanced by 10% K-1 due to TH forcing, and it increases by 10% K-1 and 36% K-1 due 

to ALL forcing. Differences between results from the two forcings reflect the DY effect 

on this event.    

• Under TH forcing only, an anomalous low-level thermal contrast exists between the SCS 

and the China continents, facilitating northward moisture transport and increasing cold-

front intensity over PRD. Together with the help of low-level convergences and stronger 

updrafts, the rainfall increased as a result. Under ALL forcing, thermal contrasts became 

more noticeable, which favors anomalous southerly winds in PRD and thus dramatically 

strengthens low-level wind convergence. The anomalous wind pattern in turn intensified 

the front system and ascending motions, resulting in a higher amplitude of rainfall change 

compared to TH-forced changes. In general, the TH and DY contribute equally to 4-day 

mean rainfall increases. While the wind-related DY contribution accounts for extreme 

rainfall changes, with the TH contribution being limited and negligible.            

(3) Another heavy rainfall event studied in detail is one that occurred in May 2016. The average 

of a large ensemble captured the observed rainband location with a reasonable intensity. We 

finally arrived at the attribution results: 

• Unlike previous studies, human-related TH forcing has reduced the intensity of the 

rainfall center in the eastern PRD by 70% or more, despite the enhanced moisture amount 

with 0.8-1 K low-level warming. Meanwhile, precipitation over southwestern PRD was 
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enhanced as high as 25%-40% by TH forcing. In contrast, the ALL forcing alleviates the 

TH-forced rainfall reduction and slightly amplifies the rainfall increase. During this pre-

monsoon event, the frequency of rainfall is most likely to decrease with warming at a 

rate of 20% K-1 and 16% K-1 under the TH and ALL forcing, respectively.   

• The reason for rainfall reduction under both forcing climates is that fast warming at lower 

layers over the eastern PRD resulted in decreased relative humidity and thus increased 

CIN, as well as the weakened front. Furthermore, the TH-induced more striking rainfall 

decrease is primarily due to the higher CIN and weaker updrafts, given the similar frontal 

intensity and CAPE between TH and ALL forcing. On the other hand, rainfall increases 

in the southwestern PRD can be attributed to the substantial increases in both humidities 

and intensified front. The amplified intensification of rainfall due to ALL forcing reflects 

a positive DY effect on this pre-monsoon rainfall. Moreover, both the TH and DY effects 

are important in determining heavy rainfall change in this event. This event attribution 

case indicates that human-caused warming may not always intensify PRD precipitation 

extremes, highlighting the critical need for more studies regarding the role of weather 

type, seasons of occurrence and background circulation, and so on. 

6.3 Innovation and significance 

This thesis focuses on the attribution of the PRD rainfall extremes to human influence and takes 

one step forward towards revealing the underlying physical mechanisms. Chapter 3 aims to 

address the seasonal responses of extreme precipitation to human impacts by conducting multi-

case attribution. Chapter 4 and 5 present two case studies aiming to further analyze such human 

impacts and physical processes involved. The innovation and significance of this thesis can be 

summed up in two parts:  
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(1) We firstly applied the reversed PGW approach to construct a “counterfactual” climate in 

PRD by removing human forcings from the initial and boundary conditions in the WRF model 

(see details in Chapter 2.4.3). This method was originally introduced by Haustein et al. (2016) 

though it was only applied to SST patterns. Later, Oldenborgh et al. (2018) have tried but failed 

to apply this method in rainfall attribution analysis as the regional model they used is unable 

to capture extreme precipitation well. Our findings clearly show human influences on extreme 

rainfall in PRD, implying that this technique could be used to attribute extreme weather events, 

for instance, heatwaves in this region.                

(2) Previous studies have attributed some specific events in China to anthropogenic forcing, as 

mentioned in Chapter 1.3. We extend previous research by attributing multiple extreme events 

that occurred in different seasons in order to investigate the seasonal responses to such forcing. 

Previous studies revealed that heavy rainfall changes on a global basis are mostly contributed 

by thermodynamic effects related to moisture changes due to human forcing, with dynamic 

contributions being negligible; however, there are large uncertainties at regional scales (see 

Chapter 1.2.3.2). Our findings highlight the importance of dynamic effects associated with 

intense updrafts and low-level wind convergences. Besides, results of two case studies expand 

our knowledge of how human-induced warming may or may not always enhance PRD heavy 

rainfall. Overall, this work complements the attribution map and ultimately provides invaluable 

insights for the PRD's future climate resilience.      

6.4 Research outlook 

6.4.1 Use of CMIP6 data 

In this study, we obtained human forcing from CMIP5 models. The new generation CMIP6 

models have been released, which have higher horizontal and vertical resolutions and improved 
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parameterization schemes for physical and biogeochemical processes (Eyring et al., 2016). 

Recent studies have examined CMIP6 models’ capability of reproducing the current climate 

(Bock et al., 2020; Dunne et al., 2020). Compared to CMIP5 models, the average of a large 

number of CMIP6 models tracks observed surface and vertical warming better, especially in 

the 21st century (Bock et al., 2020). Although the overall performances of CMIP5 and CMIP6 

models in simulating global precipitation extremes are similar (IPCC, 2021), the latter is more 

representative of the observed extreme precipitation over China (Zhu et al., 2020). Also, as 

reported in the IPCC AR6, CMIP6 models can capture the large-scale tropospheric circulation 

(IPCC, 2021). The improvements of CMIP6 models may provide us with greater confidence in 

attributing temperature and precipitation changes to human influence. In this regard, we intend 

to use CMIP6-projected human forcing and re-run this study in the follow-up work. However, 

it should be noted that greenhouse gas concentrations are updated in future scenarios and 

forcing datasets in CMIP6 models (Wyser et al., 2020). Therefore, it is difficult to directly 

compare the greenhouse-gas effect in CMIP5 to that in CMIP6 models. In other words, caution 

should be exercised when interpreting the differences between the results of this study and 

future work using CMIP6.   

6.4.2 Attribution of sub-daily rainfall extremes 

This study focused on daily rainfall extremes. Short-duration or sub-daily rainfall extremes are 

also important as they can cause flash flooding. Observed changes in sub-daily extremes under 

human-related greenhouse warming have been examined (Lenderink et al., 2017; Ali et al., 

2018; Guerreiro et al., 2018; Chen et al., 2021). The common conclusion reached by these 

studies is that sub-daily rainfall extremes intensify with warming following the CC rate at most 

locations worldwide, while increasing at super-CC rates in some regions. Such as in northern 

Australia, hourly extreme rainfall changes exceed three times of CC rate, which is not 
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explained by natural variability (Guerreiro et al., 2018). However, there is limited modeling 

evidence of variations in sub-daily extremes and their responses to human influences under 

warmer scenarios (Fowler et al., 2021; IPCC, 2021). We first plan to carry out a 10-year WRF 

simulation over the PRD region, and then assess the long-term behavior of hourly or 6-hourly 

extreme precipitation indices to check whether the observed relationship between those 

extremes and dew-point temperatures still holds. Furthermore, we apply the pseudo global 

warming method to attribute the sub-daily heavy rainfall-derived floods to external variability. 

The findings aim to provide more modeling understanding of extreme precipitation at sub-daily 

scales and insights into human-related climate change adaptation.  

6.4.3 Attribution of TC-induced rainfall   

Observational records have found that the probability and proportion of major TC intensities 

has increased over the past four decades (Kossin et al., 2020). These changes, however, cannot 

be explained by natural variability alone (Bhatia et al., 2019). Studies on attribution of TC-

related rainfall events projected that the average and maximum rain rates increase in a warming 

climate; the growing rate reaches the CC scaling (~7% K-1) and even exceeds that rate in some 

regions because of enhanced low-level moisture convergence caused by the intensification of 

TC winds (Liu et al., 2019). However, there is significant uncertainty in the projected changes 

of TC activities and also the magnitude of the related rainfall changes due to the uncertainty in 

atmospheric circulations and storm dynamics (IPCC 2021). A high-resolution regional model 

is needed to reduce these uncertainties, and attribution analysis of TC-caused extreme rainfall 

and the physical mechanisms involved will be examined in the future work.          

6.4.4 Impacts of anthropogenic aerosol forcing  

We have detected the anthropogenic influence (greenhouse warming) on PRD rainfall extremes. 

However, the concentration of anthropogenic aerosols (AA) has increased rapidly in this region 
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during the past 50 years, yet its impact on those simulated extremes is short of study. Previous 

research illustrates that AA forcing reduces the probability of heavy monsoon rainfall events 

by reducing atmospheric warming (Zhou et al., 2020) and weakening the South Asian summer 

monsoon system (Bollasina et al., 2011). A more recent study argues that AA reduced in the 

future that allows heavy rainfall in the Yangtze River to occur more frequently (Zhou et al., 

2021). But they used GCMs in which internal variability may not be excluded completely, large 

ensemble simulations using high-resolution regional models are required for the detection and 

attribution of AA forcing on rainfall extremes. Physical mechanisms, such as AA-cloud-rainfall 

interactions, deserve further study.       
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